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Orthogonal polynomials on the unit circle are completely determined by their
reflection coefficients through the Szego recurrences. We assume that the reflection
coefficients converge to some complex number a with 0 < lal < I. The polynomials
then live essentially on the arc {e Ul : rx';; (I';; 2lC - rx} where cos(rx/2) ~f vi] -lal 2

with rx E (0. lC). We analyze the orthogonal polynomials by comparing them with the
orthogonal polynomials with constant reflection coefficients. which were studied
earlier by Va. L. Geronimus and N. I. Akhiezer. In particular, we show that under
certain assumptions on the rate of convergence of the reflection coefficients the
orthogonality measure will be absolutely continuous on the arc. In addition. we
also prove the unit circle analogue of M. G. Krein's characterization of compactly
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PERTURBATION OF ORTHOGONAL POLYNOMIALS

supported nonnegative Borel measures on the real line whose support contains one
single limit point in terms of the corresponding system of orthogonal polyno-
mials. ,(" 1995 Academic Press. Inc.

1. INTRODUCTION
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Orthogonal polynomials on the unit circle u ~f {: E C : 1:1 = I} arc
defined by

m, 11 = 0, I, 2, ...,

where

rp,,(/l,:) = h',J/l):" + lower degree terms,

and /l is a probability measure in [0, 2n:) with infinite support. Here and
in what follows, for simplicity, we refer to /l as a probability measure on
11'; if I is a function on 11' then J1.fdll ~J~1! I(:) dll(O) where: = eil!, and,
for instance, if II' is the Radon-Nikodym derivative of II then 11'(:) ~t p'(O)
if : = e i

(} with 0 E [0, 2n:). Standard references are books by Szego [42],
Freud [II], Grenander and Szego [20], Geronimus [18], and two
reasonably recent surveys [22] and [30].

These orthogonal polynomials satisfy the (Szego) recurrences

11.'" I(p)rp,,(jl,:::)=:h")jl)rp,,_ 1(1',:)

+rp,,(p, 0) rp~-l(/l, :),

+:rp,Jp, 0) rp" - ,(/l, z),

I1EN,

11 EN,

( 1)

(2)

(cf. [42, formula (11.4.7), p. 293] and [ 18, formulas ( 1.2) and (1.2'), p. 6])
where the reversed *-polynomial of a polynomial p" of degree J1 is given by

d~r . . del
P,;(:) = :"p,,( 1/:). The mOnIC orthogonal polynomIals are et>,,{fL) =
11.'" 1(p) rp ,,1I1) and then the Szego recurrences take the form

II EN,

and

I1E N.
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The coefficients {<P,,(Jl, O)} "E N describe completely not only the monic
orthogonal polynomials on T, but also the orthonormal polynomials since

- 1/2

nE N, (3)

(cf. [ 18, p. 7]). The coefficients {<P,,( fl, O)} "Ef~ are known as r£~/7ection and/
or recursion and/or Szegl} and/or Schur coefficients. I

Perhaps the easiest proof of ( I ) (and (2)) is using another set of (equiv
alent Szego) recurrences which can be stated as

or, equivalently,

"
K,,(fl) qJ,;(fl, z) = L: qJk(JI, 0) qJk(JI, z),

k~O

I1E N. (5)

The latter follows directly from the fact that on the unit circle z= I/z, and,
thus, two naturally arising extremal problems will have the same solutions
(cf. [42, formula (11.4.7), p. 293] and [II, Theorem 5.1.8, p. 195]). If we
replace fI by 11 + I in (I) and then eliminate qJ,;(Il) from it using (5), we
obtain

f1EN, (6)

which is the orthogonal Fourier expansion of ZqJ,iJI, z) in terms of the
orthogonal polynomial system {qJ,,(Jl)} :=0' The latter formula is useful
when considering matrix representation of the mUltiplication operator in
terms of {qJ,,(Il)} "E N (cf. Section 3).

Since all the zeros of <P" are inside the unit circle (cf. [18, Section 8,
p. 9]), 11P,,(fl, 0)/ < 1 for n EN. Conversely, when {IP,,(O)}"E N is a sequence
of complex numbers with IIP,,(O)I < 1, then, by Favard's theorem on T (cf.
[8] and [10]), the polynomials obtained by the Szego recurrences are
orthogonal with respect to a unique probability measure fl on T with
infinite support so that rP,,(O) = <P,,(Jl, 0) for 11 EN.

I Sometimes the sequence {-</J"+ ,(fl, OJ) "EN is referred to by these names.
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Szego's theory deals with the case when
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logfl'EL1(lr) ¢> L 1<!Jk(/1,0)1 2 <:xJ
k ~ I

¢> lim 1\,,(/1) < oc
11 -....+ ,x.

¢> P#L 2(fl,lr) ¢> D(1-I<Pk (/I,OW»O
k~1

¢> L IcPk(/I,OW<:xJ
k~1

(7)

where IP denotes the set of all algebraic polynomials with complex coef
ficients (cc. [42], [20], [18], or [15, Theorem VII, p. 751] and the
references therein). Hence, under Szego's condition, lim" ~y <P,,{fl, 0) = 0
always holds. The simplest case is when cP,,(fl, 0) == 0 for n EN which gives

(
((J"(fl'::)) = (::
qJ,;(/I,::) 0

n EN.

Given a probability measure fl on lr with infinite support, in addition to
{ ((J ,,( II) } /l E ''J' we will also study polynomials of the second kind { !/J ,,!II)}"E N

which are defined as the orthogonal polynomials with reflection coefficients
{ ~ <P/l( fl, O)} /l Ere,' 2 They can be computed simultaneously with the polyno
mials qJ,JII) by Szego type matrix recursions such as

(
qJ/l( fl, ::)

((J,;(fl, ::)

(8)

The advantage of using a matrix recurrence relation as opposed to a vector
recursion is that one can manipulate inverse matrices whereas vectors are
not invertible.

Since

I

qJ,,( II, ::)

((J,;(fl, ::)
!/J/l(f/,::) 1== _2::/l,

-!/J,;(fl, ::)
II EN, (9)

'Note that the second kind orthogonal polynomials associated with the second kind
orthogonal polynomials are the orthogonal polynomials one started with, as opposed to the
case of orthogonal polynomials on the real line where this procedure leads to the notion of
associated !,o!rno/llia!s.
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(cf. [18, formula (1.17), p. 11]), we have

1~ l<p,,(/l, z)III/1,,(/l, z)l, zElr, nEN, (10)

for every system of orthogonal polynomials on T In particular, if the
orthogonal polynomials are bounded from above at a point on lr, then the
second kind orthogonal polynomials are bounded from below at the same
point, and vice versa. This leads us to the following simple but useful

LEMMA I. Let Ii he a prohahility measure on lr having an infinite sup
port. Assume that there is a closed circular arc L1 s;: lr and an infinite subset
N * s;: N such that the second kind orthogonal polynomials {1/1 ,,(II)} "E r\J' arc
un(formly bounded in L1. Then /l E AC(L1).

Proof' of Lemma 1. First, it follows from inequality (10) that the
uniform boundedness of {1/1 1/( /l, z l}"E r,' in L1 implies the divergence of the
series LkE l<Pk(/l, z)1 2 in L1 so that /l has no mass points in L1 (cf. [15,
Theorem VI, p. 750]). Second, for every such probability measure /l,

(II)

where I,j' denotes the characteristic function of an arbitrary circular arc
L1*s;:L1 (cf. [27, Lemma 4.2, p.248J') so that by (10)

11(L1*) ~ 1L1*1 sup max 11/1)1/, zW,
IIEh,j'" ::Ed'"

where IL1 *I denotes the normalized arc-length of L1 *, and, therefore,
/lEAC(L1). I

The following lemma is equally simple and equally useful.

LEMMA 2. Let /l be a probahility measure on lr having an infinite sup
port. Then the inequality

1/11'(fJ) ~ 2n lim sup 1<P,,(II, zW, for a.e. z = eill
E lr, (12)

holds for each iI~flnite N* s;: N. In particular, (f' there is a closed circular arc
L1 s;: lr and an infinite subset N * s;: N such that the orthogonal polynomials
{ <Pll(/l)} n d,,' are uniformly bounded in L1, then ll/l' E L Y

'( L1).

3 To be precise, in [27. Lemma 4.2, p. 248] the analogue of this is proved for continuous
functions which then extends to all Riemann-Stieltjes integrable functions by one-sided
approximation, and if It has no mass points in A then I,. is Riemann-Stieltjes integrable for
allA·~A.
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Proof of Lemma 2. By [27, Lemma 4.2, p. 248] (cf. the footnote in the
proof of Lemma I ) formula (II) holds if 1,10 is the characteristic function
of an arbitrary circular arc L1 * as long as the endpoints of L1 * are not mass
points of fl. Hence, a simple application of Fatou's lemma completes the
proof. I

We are interested in orthogonal polynomials {Ii? ,Afl) } "E '" on the unit cir
cle satisfying either lim" ~x cf>,,(/i, 0) = a or the seemingly more general
lim" ~ f. r"cf>,.(fl, 0) = a where a E ([ with 0 < lal < I and r Elf. We want to
compare such orthogonal polynomials with the system of orthogonal poly
nomials with constant reflection coefficients {a}" EN' The latter polyno
mials have been studied earlier by Geronimus and Akhiezer in, for
instance, [19, p.93], [14], [17, §4.3], and [1].

As far as lim" ~ Xo cf>1I(fl, 0) = 0 goes, this not only follows from Szego's
condition logfl'EL1(lf) but it also holds whenever fl' is positive almost
everywhere in If. The latter was proved by Rakhmanov (cf. [37,
Theorem 1, p. 105]). As a matter of fact,

.2ft Ilcp (p eitW I
fl' > 0 a.e. =- lim sup J "', 10 - I dt = 0

"~f. lEN 0 IIi?" + I( fl, e' ) -

and

(ef. [26, Theorems 2 and 3, p. 64], [32, Theorem 1.1, p. 295], [33,
Theorem 4, p. 325], and [23, Theorem B, p. 192]).

Finally, we mention

I 1cf>,,(p,O)I<x==>jIEAC(lf) & (p')±IEC(lf)
11=1

(cf. [18, Theorem 8.5, p. 163]), and

x

I jcf>lI(ji, 0)1 < ex; =- p E AC(lf) & (Ii') ± IE C( If)
11= 1

(cf. [3, Theorem 8.1, p. 483]).
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2. THE CASE OF CONSTANT REFLECTION COEFFICIENTS

Given a E iC with 0 < lal < I, let /1" denote the probability measure on If
for which the corresponding orthogonal polynomials satisfy if>"(Jl,,, 0) = a
for n EN. For sake of convenience, we will denote the corresponding
orthogonal polynomials and second kind orthogonal polynomials by 0"

" • • A dol A dol
and ljJ", respectIvely, that IS, qJ" = qJ,,(Jla) and ljJ" = ljJ"(p,,) for n E N. In
addition,

rJ. dol ')1 I I>cos "2 = - a -, rJ.E(O, n), (13 )

dcf{ 'II }L1~ = (" : a.<()<2n-rJ. and L1~~' {('ill: rJ. < f) < 2n - :x} . (14)

With this notation, for n E N the orthogonal polynomials with constant
reflection coefficients {a}" E ~" are given by

( 0,,(:)) I (: a)(0" 1(:))
0,;(:) .)1 -lal 2 :(1 I (P~ 1(:)

(- (/)" (I)=(I-laI2) ,,/2 -_

:a I I

(cf. (3)). Similarly,

(15)

( ~,,(:)) I (:
~,;(z) =.)1 _[a[2 -:(/

(16 )

( :_ a)=V(:1 O)V'I
:a I 0: 2

where: I and :2 are the eigenvalues of L~i n. Then

where that branch of the square root is chosen for which

J(z - e"Hz - e i~)
lim I.-=_ ,f.
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Cz'; + Dz;
(I-laI 2)"/2'

11=0, I, ... ,

where A, B, C, and D are functions of z which do not depend on 11. Setting
11 = 0 and 11 = lone can evaluate A, B, C, and D, which yields

I
(

-" _ -" -""" I__,,- I)"'1 ... .., "-I ... ..,
cfJ"(Z)=(I_! 12 )"/2 (z+a) _ _ ---z(I-la/-) - ,

a -J ~2 ~I ~2

and

Similarly,

and

/lEN,

( 17)

11 EN.

( 18)

11 EN,

(19)

11 EN.

(20)

When z=e ill with (x~(}~2n-:x then IZII=I'::21=JI-laI2, and, hence,
there is a constant C> 0 such that

where

(21 )

del' . () () I "}'lO,,( 0) = sm "2 Icos ex - COS -" 1-, (22)

and, therefore, for every 0 < e < n -:x there is a constant C(e) > 0 such that

1~,,(z)1 ~ C(e), (23)
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In other words, given a fixed norm for 2 x 2 matrices, m VIew of (9),
(21), and (23), there is a constant C* > 0 such that

\
I\.I(¢J,,(Z)

¢J,;( z)
~)Z))±lll c*' I)

A * _ .~ mm(n, v,,({, )),
-t/J,,(~) ,

(24)

and for every 0 < e < n - ex there is a constant C*(e) > 0 such that

II (¢J,,(Z)
II (,0,;( z)

(25)

For these polynomials we have

J. O+ex . f)-ex
sm--sm--

f
~'" - 2 2
, cP)z) cPIII(Z) 0 _ fJ dO

2nsin-
2

-

• A (,III) A ( IfI) - <5+lfl((J" £ ((Jill e - III.'"

with

elll = I -a
I -li'

if II - 2a I > I,

if 11-2al ~ 1,

(cf. [19, formulas (XI.26) and (XI.27), p. 94]).4

3. SPECTRAL ANALYSIS

For orthogonal polynomials on the real line there is an intimate rela
tionship with infinite Jacobi matrices containing the coefficients of the
three-term recurrence relation for the orthonormal polynomials. These
Jacobi matrices are symmetric tridiagonal matrices which can be extended
to self-adjoint operators acting on the Hilbert space 12( N). Applying results
from perturbation theory of self-adjoint operators then allow the inter
pretation of spectral properties of the Jacobi matrix as properties of the
orthogonality measure. Such properties include (but are not limited to)

4 N.B. that our {/ corresponds to -Ii in [19] (see footnote 2).
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information about its support and enables one to study its absolute con
tinuity.

For orthogonal polynomials on the unit circle there is a similar rela
tionship with infinite matrices, but instead of a self-adjoint tridiagonal
matrix (for determinate moment problems on the real line) one deals with
a unitary Hessenberg matrix (for measures outside the Szego class).

Given a probability measure p on If with infinite support, let U(p, If)
denote the Hilbert space of measurable, square-integrable functions on the
unit circle If with the scalar product and norm

and

By a theorem of A. N. Kolmogorov and M. G. Krein, the system
{ qJ,,(p)} :~ 0 forms an orthonormal basis in L "(fl' If) if and only if log Ii' if
L I ( If) (cf. (7) and [20, Theorem 3. 3( a), p. 49]). All measures p considered
in this section are such that log Ii' ¢. L1(lf).

In our investigations a key role is played by the unitary multiplication
operator V(p I: L "(fl, If 1-> L "(fl' If) defined by

[ U( fl ) f] (t) = tf( t), tElf, fEU(;"I, If), (26)

(271

and its matrix representation O(/L) in the orthonormal basis {qJ,,(p)},~~().

By (31 and (61 we have

OII'I{:: ::: ...)
where

_ {-~+ I.(fl' 0) f/Jj(~I:I~) rH ~ i + I ( 1 -If/Jk(fl, OW) 1/",

uij- (1 If/Ji+dp,O)I) ,

0,

i<)+ 1,

i=)+ 1,

i»+l.

(28)

for i,) = 0, 1, ... (cf. [43, formula (3), p. 409] and for a doubly infinite
analogue see [13]). Infinite matrices such as (27)-(28) in which all entries
below the subdiagonal vanish are called (upper) Hessenberg matrices.

We can view the infinite matrix (27)-(28) as a unitary operator O(IL):
12( N) -> 1"( N) which is unitarily equivalent to the multiplication operator
V{fll. In particular, supp(p) is equal to the spectrum of O(p).

THEOREM 3 (Geronimus, 1941 I. Let p be a prohahility measure on If
with infinite support, and let {qJ ,,(II)} ,~= () he the corresponding orthogonal
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polynomials. Suppose lim" ~ y. $,,(fL, 0) = a, where a E C with 0 < lal < 1. Let
cos( oc/2) ~..JT- lal:i where oc E (0, n) and ,1)' ~f {e,o : y:::; ():::; 2n - y}. Then
,1 ~ <;; supp( Il) and SUPP(fL)\,1/1 is finite .If)r every 0 < fJ < oc.

Remark 4. Geronimus [14, Theorem 1', p. 205] used continued frac
tions to prove Theorem 3, whereas our proof is based on the spectral
theory of unitary operators. 5

Remark 5. The statement that "SUPP(fL )\,1/1 is finite for every 0 < [J < oc"
is just another way of saying that SUPP(fL)\,1 ~ is at most countable whose
limit points (if any) must belong to ,1 ~.

Proof' of Theorem 3. Along with the multiplication operator U(II) (cf.
(26)) consider the multiplication operator U(/I,,) on the space L 2(/1", If)

where the measure fLa corresponds to the constant reflection coefficients
$"(p,,,O)=a for nEN (see Section 2). To study both these operators
simultaneously consider their matrix representations O( fL) (cf. (27 )-( 28 ))
and

'" )
... ,

where

i=O,

O<i<j+l.
i=)+l,

i»+l.

for i, ) = 0, I, .... This follows from (27 H 28) applied with II replaced by II".
Both 0(/t) and U(lIal are unitary operators acting on the same Hilbert
space 12( N). As discussed in Section 2, the continuous spectrum of 0(11,,) is
the arc ,1", and, in addition, 0(/1,,) may have at most one eigenvalue which
must be in If but is located outside this arc. Let S: 12( N) ~ 12( N) be the
shift operator given by the matrix representation

o 100
001 0

S= 0 0 0 I
o 000

, N.B. Instead of ,1, c; SUPP(II). Geronimus claims ,1, c; sUPP(1I ), but, of course, SUPP(/I) is
closed.
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Then we can write O(JI) as

f.

O(/l) = S*D _ )(/l) + I D/(/l) SI
/~o

403

(29)

where S* is the adjoint of S and each D/(jI): 12(N)->l1(N) is a diagonal
matrix whose main diagonal is equal to the jth diagonal above the main
diagonal of 0(/1), that is,

This infinite series representation for 0(111 converges in the operator norm.
To see this note that II S II = I and

i+j

II D/(jl)1i = sup 14>/+ j+ l(jI, 0) 4>j(jI, 0)1 11 )1 -14> ,d/l, OW
i:;,() k=i+ I

i+J

~ sup Il )1 -14>k(jI, oW,
i;?-O k =i + I

(30)

for j E]7+ since l4>n(/l, 0)1 < 1 for n EN. If lim" _ f 4>n(li, 0) = a with a ~ 0
then {1!D)ldli} /~ ) decreases exponentially, and, therefore the series in
(29) converges uniformly.

Similarly, we can write O( II,,) as a uniformly convergent series

0(jla)=S*D_1(/1,,)+ I D/(jla)SI,
/~o

Now consider the dilTerence 0(/1) -- OUl,,). Given j = - I, 0, I, "', the dif
ference D/(jI) - D/(jI,,) is a compact operator since it is a diagonal operator
for which the entries converge to zero. Linear combinations of compact
operators and the product of a compact operator with a bounded operator
remain compact. Moreover, the set of compact operators on a Hilbert
space is closed. Hence, DUd - O(jI,,) is a compact operator. But then
H. Weyl's theorem6 says that, except for eigenvalues, the spectra of 0(/1)

and 0(1i"j are the same. Since the spectra of O(/ll and O(/IJ are equal to
the supports of II and Ii", respectively, this is precisely what had to be

"Weyl proved his theorem for sclt~adjoint operators, We arc lIsing a more general version
as given in [2J. Problem J43. p. 91 ] and [44. Proposition I. p. 62].
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proved in view of the constant reflection coefficient case discussed In
Section 2. I

We finish this section by proving the unit circle analogue of M. G. Krein's
characterization of compactly supported nonnegative Borel measures on
the real line whose support contains one single limit point, in terms of the
corresponding system of orthogonal polynomials (cf. [2, Theorem 3,
p. 231] and [4, Theorem 4.3.5, p. 117]). The general case which deals with
finitely many limit points just as M. G. Krein dealt with measures on the
real line (cf. [2, Theorem 2, p. 230] and [4, Theorem 4.6.2, p. 137])
remaInS open.

THEOREM 6. Let 11 he a prohahility measure on If having an if~tlnite

support, and let r Elf. Then the fl)llOlving statements arc equivalent.

(i) The derived set of the support of'll is equal to {r}.

(ii) We have lim" ~ 'c/.' J~ / ICfJ ,,( f.1) j2 df.1 =/( r) .ll)r every f.1-measurahle
function / which is hounded on lr and continuous at r.

(iii) We have lim" ~ I JIf fCfJ,,(p) CfJ" +k(ll) dll = f( r) (lo. k .ll)r all k E Jl.
and uniflmnly in k E Jl. + .ll)r every Il-measurable function f which is hounded
on lr and continuous at r.

(iv) We have lim,,~x h:: ICfJ,,(Il, ::Wd/l(fJ) =r where ::=eiO
.

(v) We have lim,,~ c/. h ::CfJ,,(/l,::) CfJ"+k(/l,::) dll(O) = r (lO.k for all
k E Jl. and uniformly in k E Jl. + where:: = eiO

.

(vi) We have lim,,~x cfJ,,+ ,(Il, 0) cfJ,.(p, 0) = -r.

Proof of Theorem 6. For sake of brevity, eil! is denoted by - In all
integrals.

(i)=>(ii): Fix £>0. Then, since CfJ,,'S are orthonormal,

IfIf / 1CfJ ,,( Il )1
2

dll - I( r ) I

~J jf(z)-f(r)i ICfJ,,(Il,ZW dll(B)
IT
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= r If(:) -f(I)llqJ,,(p,:W dp(O)
'1"- rl <l:

~ sup If(:) -f( I)I +f If(.:) -f(I)llqJ,,(p, :)1 2 dll«())·
I" - rl < {; I" rl ~ c

405

It is well known that for every :=e;OElr we have L,;~o IqJ,,(ll.:W~

[pI {O})] -I. This follows, for instance, from the extremal property satisfied
by the Christoffel functions (cf. [42. Theorem 11.3.1, p. 290] V By (i), the
set ti, ~ supp(/d n {= E l' : I.: - II ~ e} is a finite collection of mass points
of P so that L,;~o IqJ,,(II. :)1 2 converges uniformly on ti" In particular,
lim" ~ y: IqJ,,(:)1 = 0 uniformly on tic so that lim" ~ f JI> rl?' If(:) -f( III
l(p,,(p,:W dJI =0. Therefore.

li~~s~p IIII f !qJ,,(p Wdp -f( I) I~ I" s~F<t 1f(=) -f( I)I·

Letting t; ---> 0 yields (ii).

(ii) =- (iii ): (ii) is a special case of (iii) whereas "( ii) = (iii)" is proved
as follows. Given k E If and 11? -k. by orthogonality we have

I fqJ,,(p) qJ"+k(P) dJl -/(I) i5 0 . k
1)

so that Cauchy-Schwarz's inequality yields

I III .tip,,{fd qJ" +k{fl) dll -f( I) bo. k 1

2

~L1/(:) -/( IW /qJ,,(p. :)1
2 dp( 0).

Therefore, (iii) follows directly from (ii).

(iii)=(v): This is straightforward by letting.t\:)~·:.

(iv) =- (v): (iv) is a special case of (v) whereas "( iv) = (v)" is proved
as follows. Given k E If and n ~ - k. by orthogonality we have

7 Actually. we have L: ~ () Irp"lp. ~W = [pi {II} l] - '. but the latter is a bit harder to prove
as opposed to the inequality. which is straightforward (cf. fonnula (7) on p. 453 and its proof
on pp.444-445 in Szego's extremum problem on the unit circle by A. Mate. P. Nevai. and
V. Totik. Ann. Math. 134 (1991 l. 433--453).
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Hence, Cauchy-Schwarz's inequality combined with (iv) and ffJ,,'S
orthonormality yields

= 2 - 2~ {fL: !ffJ,,(lt, :)1 1 dji(O)}~ 0

so that (v) holds.

(iv)=-(vi): This follows by observing that, according to (6),
JT: IffJ,,(ji,:W dji = -(/J,,+ ,(11, 0) (/J,,(ji, 0).

(v) => (i): Consider U(jt) defined by (26) and it matrix representation
O(lt) given by (27)-(28). Just like in the proof of Theorem 3 and borrow
ing the notation from there, write O(ltl as

x

O{jtl = S*D_,(ltl + I Dj(jl)S'
1=0

(31 )

where Dj(ji) is a diagonal matrix whose diagonal is equal to the jth
diagonal above the main diagonal of O(jt), that is,

diag D)p) = <U(IL) ffJj+,,{jt), ffJ,,{jt)1'

= {f71 :qJ/+,,(ji,:) ffJ,,(lt,:) djl(O)}"
_ 0 1(=0

for j = - I, 0, I, ....
Thus, the entries on the main diagonal of Do(j1) - rD and, for each j ¥ 0,

the entries on the main diagonal of D)ld converge to 0 whenever (v)
holds, that is, Do(ji) - T Dand each such D)j1) are compact operators. 8

By (vi) (which is equivalent to (v)) and

11 E N,

we have lim,,~ oc IcP,,(j1, 0)1 = I. Thus, by (30), {IID)11)11 }/'"' .. J decreases
exponentially, and then the series in (31) converges in the operator norm.
Hence. 0(/1) - TO: 12( N) -,.f2( N) is a compact operator.

• Udenotes the identity matrix.
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According to a theorem of F. Riesz and J. Schauder (cf. [40, Section 79,
p.187J and [39, Theorem VI.l5, p. 203J) the spectrum of the operator
0(/11- r ~ is an at most countable set with no limit point except possibly
zero. Since supp(p) is an infinite set, the spectrum of the unitary operator
O(p) = ( V( p )-r D) + r Dis a countable set. it lies on the unit circle. and its
only limit point is {r}. This is precisely what is stated in (i) since the
spectrum of V(p) is equal to SUpp(/l). I

Remark 7. Geronimus points out that the one-point version of M. G.
Krein's theorem (which was known to Stieltjes [41, note on p. 564-570J)
may be paraphrased as foIlows (cf. [16, Theorem 32.2, p. 72J). If the
sequence {t:Pn( p, 0) }nEN is real then the derived set of the support of Ii is
equal to { - I} whenever

lim (l +t:Pn(Jl,O))(I-cfJn+tlll,O))=O.
11 ......... ,y~

It is easy to see that for real sequences {cfJ,,(p, 0) L,E ~ Geronimus' condi
tion holds if and only if limn _ "" cfJ" +1(/1, 0) cfJ,,(Jl, 0) = 1.

As a matter of fact, for real sequences {an E ( - I, I)} nEN or even for
{an E [ - I, I J} "E N' the conditions (i) limn _ " a" = a where a is either I or
-I, (ii) lim"_xa,,a,,+I=I, and (iii) lim"_f(l+a,,)(I-a,,+!l=O, are
all equivalent. The proof of this is an elementary exercise about lim inf's
and lim sup's. For instance, if (iii) holds and lim sup" -x. a" = I then there
is an infinite subsequence of the an's which are all positive and then (iii) via
induction implies that the an's are all positive for sufficiently large n's so
that by (iii) we have Iimn_" a" = 1. On the other hand, if (iii) holds and
Iimsup'H'~ an < 1, then (1 +an ) can be estimated from above by a con
stant multiple of (I + an)( I - an + I) for sufficiently large n's so that by (iii)
we have lim" -x an = - 1. Proving (i) from (ii) is even simpler.

Remark 8. If lim sUP,,_x. 1<P,,(/I, 0)1 = I then Ii is singular (cf. [37,
Lemma 4, p. II°J and for its operator theoretic analogue see [6 J). 9

Remark 9. Observe that cfJ,,(Jl,O)~(I-n ')exp(ilogn), nEN, IS a
divergent sequence for which (vi) in Theorem 6 holds.

EXAMPLE 10. A. Zhedanov's example where, given 0 < q < 1, t:PnlJl, O)~r
2q" - I, n EN, yields yet another sequence for which (vi) in Theorem 6
holds.

q We point out a typographical error in [37] appearing both in the Russian original and
in the English translation. Namely. the condition lim sup" ~ , 14>,,(p. 0)1 = I is stated as
limsup,,_ 14>,,(11,0)=1.
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0< q < I,

The details of A. Zhedanov's example are as follows. We construct a
measure II on lr with - I as the only limit point in its support and
calculate its recursion coefficients explicitly. 10

Given 0 < q < I, consider the so-called (monic) "discrete q-Hermite poly
nomials" (also known as the AI-Salam & Carlitz polynomials)

H ( ) [~J (q;q)" (I)k klk II." 2k
" x; q = f..., " - q .X

k~O ((r; (r)k (q; q)"-2k

where (a; q)" ~. nz ~~) (1 - all. These polynomials are known to be
orthogonal (but they are not orthonormal) on [ -I, I] with respect to a
discrete measure a on the real line, concentrated at the two-sided sequence
{ ±q/} /~~ 0 with masses )'/ (~ a{ ±qi} > 0 for j = 0, 1, .... The corresponding
three-term recurrence is given by

H,,+I(x;q)=xH,,(x;q)-q" 1(I-q")H" I(X;q),

Ho(x; q) = I, Hdx; q)=x, 12 EN,

(cf. [12, Exercise 7.38, p. 193]). Going over to the unit circle and denoting
the corresponding measure by v, we have by Geronimus' formulas

(/>2" I( v, 0) = 0 and (/>2,,( v, 0) = 2q" - I, 12 EN,

(cf. [16, Theorem 31.1, p. 67]). The measure v, which can be viewed as a
measure on [- re, re), is symmetric and it is concentrated at the set
{±O/}:~o where cos 0/ = ±qJ and v{ ±O/} = 1'1 for j = 0,1, .... We have
0/ + 0,- = re. The condition (/>2" It v, 0) = 0, 11 EN, means that the measure
v is "sieved". For the measure II concentrated at the points {r;t} where

der def ) del'
r+ = 20+ and r· = 20. -2re with masses II{r:t, = ". we have dv(O) =} , .1.J t J j I}'

dll( 20). the support of the measure II has only one limit point at - re, that
is, the derived set of SUPP(II) with II viewed as a measure on lr, consists of
{ -I}, and corresponding recurrence coefficients (/>JII, O) are equal to
2q" - I for 12 E N (cf. [46, formula (7), p. 2] applied with d = 1/2).

4. PERTURBATION ANALYSIS

Given aEt: with 0 < lal < I, consider

(32)

10 We thank A. Zhedanov for his permission to include his example here Icf. [46. pp. )- 2]).
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Then rP" and ~" have the same leading coefficients as the comparison poly
nomials 1>" and tiJ" which are associated with the reflection coefficients
{a} "E hand { - a} "E r", respectively (cf. Section 2).

LEMMA II. Given a probahility measure II on lr har)il1g an infInite sup
port, and a E C with 0 < la) < I, let E,,(/l, a) he lil:fined by

del I ( 0 l[>,,(p,o)-a)
E,,( fl, a, ::) = I 0 '

V 1-la1 2 ::l[>,,(Il,O)-a

Then, for n EN,

or, equiwlently,

11 EN.

k I

(33)

(34)

(35)

where 11>"},, E r" and {tiJJ "E 'j are the orthogonal polynomials con'e,lponding
to the reflection coefficients {a}" E~, and 1- a}" E H' re!Jpectively, that is,

(
rP,,(=)
rP ,;(::)

t,,(::)) = (I - lal 2 ) -,,/2 (=_ (II)" (II
-1jJ,;(::) ::a

(36)

(d (3) alld ( 15) ).

Proof of Lemma 11. We rewrite the matrix recurrence (8) as
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(cf. (33)). Multiplying this from the left by (I_JaI 2)(k+' 1i2(;'" '() -k-I and
summing over k = 0,1, ,.. , n -I, yields (34). Formula (35) follows directly
from (34) and (36). I

THEOREM 12. Let II he a probability measure on U having an il~flnite su£
port. Given £IE C with 0 < Jal < I, let IX E (0, n) he dejined by cos(IX/2) ;;
JI _1£11 2

. fl" the reflection coc.tficients {(/>k(ll, OJ} kE oj" the corresponding
orthogonal polynomials satis/.)'

(37)aEC, 0<1£11<1, rEu,Ilrk (/>k(Il,O)-a[<oc,
k~1

then the measure I' is absolutely continuous on the open circular arc II r ,1 ~,

and jiJr every closed circular subarc t c r Ll ~ Ive have 1/11' E L f (6'). II"

f

I log k [r k(/>k(ll, 0) - £II < ce,
k~1

£IE C, 0 < 1£11 < 1. r E U, (38)

then p satisfies S:ego's condition on r Ll x ' that is, l'x. r logp' E LI(r Ll x ) where
vx,r(fJ) ~I sin( (() - arg r )/2) Icosx - cos( () - arg r) [ li2 (cl (22)). II" there is
a constant C> 0 such that

"I k Irk(/>k(/l, 0) -al
k~1

<Clog(n+ I), aEe. O<lal<l, rEu, liEN, (39)

then there exist two constants D > 0 alld }' > 0 such that 11'(:) ~ D Icos IX -

cos( () - arg r) J ;' for almost every: = e ill E r Ll x' M oreOl"er, il"

I k Ir k (/>k(ll, 0) - al < oc,
k~1

aEC, O<lal<l, rEu, (40)

then there exists a constant D > 0 such that 11'(:) ~ D Icos IX
cos( () - arg T)\ for almost every:: = eill E r Ll x'

Proof 01" Theorem 12. First, observe that it is sufficient to prove the
theorem for T= 1. To see this, note that a composition of the measure
II with the rotation T- I leads to the orthogonal polynomials
{cp,,!l1 r ',::)=.T"cp,,(p,r I::)};:=o so that the zeros of the orthogonal
polynomials associated with II u r -I are r times the zeros of the orthogonal
polynomials corresponding to /I. Hence the rel1ection coefficients, which are
the products of such zeros, satisfy (/>,,(/1 r -1,0) = r"(/>,,!lI, 0) for n EN.
Therefore, we can assume without loss of generality that r = I.

11 Recall that the circular arcs LI, (closed) and L/~ (open) have been defined in 113) and
( 14). The rotation of a circular arc LI by arg r for r E lr is denoted by r L/.
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Second, observe that, by (3), either of (37)-(40) imply

0< lim /{l1(jl)( I -laI 2)"/2 < 00. (41)

Hence, suP"Ef~ max cElf IrP,'(p, .::-)j<p,,(p, .::-)1 ± I and sUPnE N maxcd ,'ii,,(p, .::-)j
J/J,,(jl, .::-)1 ±I are both finite (cf. (32)).

We wil1 use Lemmas I and 2. In what fol1ows, we fix a norm for 2 x 2
matrices and define a by the appropriate condition (37)-(40).

Case when (37) Holds. Pick a closed circular subarc 6 c LJ ~. Then, by
(25) and (35), there are two positive constants C I and C2 independent of
n such that

1.I( rP,,(p, .::-)
max·
CEI! Ii rP,;(p,.::-)

nEN,

so that by Gronwal1's inequality (cf. [45, Lemma, p. 440] and the references
therein),

II( rPn(P' .::-)
max _*. ~
:En <p,,(p,~)

~ClexP(C2:~~~E~IIEk+dP,a,'::-)II). flEN.

Thus, since max: En IIEk + I(jl, a, .::-)11 ~ C3 IcPk + ,(jl, 0) - al (cf. (33)) with an
appropriate positive constant C 3 independent of k,

II(
rP,,(jl,'::-)

sup max _*
"EN CEn <p,,(jl,Z)

!ii,,(p, z.) )I!- ... < 00,-J/J,;(jl, Z) .
(42)

and, therefore, by Lemmas I and 2, ILEAC( 6) and Ijll' E L Y (6), respec
tively (cf. (32) and (41)).

Case when (38) Holds. The basic idea goes back to [29, Theorem 6,
p. 381] and [7, Theorem 3, p. 355]; it is based on estimates of log + 1/11' in
terms of lim sUPl1~ Y log+ I<Pl1(/ll! (cf. (12)).

Let

n-I
dcf '\'

S,,(jI,a,z) = 1+ L. IIEk+dll,a,z)11
k~O

(43 )
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(cf (33)). Then, by (24) and (35),

:::; S" 1(/1, a, :)[ 1+ Ct min(n, v~({J)) I\E,,(II, a, :)\\],

with an appropriate constant C t > 0, so that, by induction,

"
0:::; log S,,(/I, a,:):::; log S,(/I, a,:) + Ct L min(k, v~((})) IIEk(I-I, a, :)11,

k=2

(44)

Multiply (44) by v~ and integrate the resulting inequality over Ll~. Taking
(38) and (33) into consideration, and using sup"d~[I/log(Il+l)L,v~

min(n, v,,)] < CfJ, simple computation yields SUP"E r~ SA, v)og S,,(I-l, a) < Cf),

and then, by Lebesgue's 1I/Oll%lle cOllvergellce theore1l/, sup" Er~ v)og
S,,(II,a)EL'(Ll,,). Hence, by (24), (35), and (43), sUP"Er~v)og+lrf,,(p)IE

L'(Ll"J Now use Lemma 2 to conclude that v~log+(IIIt')EL'(Ll7JThe
integrability of ['~ log (I/p') follows from Jensen's (AGM) inequality.

Case when (39) Holdl·. We will adapt the arguments used in [28]. Our
goal is to show that there exists a constant I' > 0 such that

D 1/2 ~f~ sup max Icos Gl. -cos Oll/2Irf,,(fI, :)1 < CIJ,

11 E ;: E .1'),

and then, by Lemma 2, 1/(:) > D Icosex - cos f.W for almost every
: = eill

E Ll ~ what needs to be proved.
By (24) and (25), there are two positive constants C4 and C s inde

pendent of n such that

I II(cP,,(II,:)
~ max
n oEd, cP,;(j.l,:)

" I

:::;C4 +Cs I kmaxIIEk +,(/I,a,:)1I
k ~ 0 0 E.1"

Il EN,
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SO that by Gronwall's inequality (cf [45, Lemma, p. 440]),

(46)11 EN.

! max II(?:(P'~) t:(/l, ~))II
11 ~Ecl'i1 rp,,(p,_) -!/I,,(/l,_)

~C4exp(c<~>~~~ IIEk -1-)(/l,a,Z)II),

Thus, since IIEk + 1(/1, a, z)11 ~ C, l<P k + 1(0) -al (cf. (33)) with an appropriate
positive constant C, independent of k, assumption (39) guarantees the
existence of a constant 1'* > 0 such that

_y' r[(((J"lI1, z)
sup max 11 _ *
"E N OLJ, II rpn (II,:)

~nlll,:) )1'- * _ I < oc.-!/In (11,-)
(47)

In the following argument, we will use the inequality

(48)

where C, is an appropriate positive constant. This is an immediate conse
quence of (24) and (35) (cf (33)). Also note that by (391

f

L k" l<Pk(p, 0) - al <oc,
k~)

O~a<I. (49)

If 1'* < I in (47) then, by (48) and (49), inequality (45) holds with)'= I
and we are done. Otherwise, using (47) on the right-hand side of (48) and
applying (49) with a = 1/2 yields

(50)

If 1'* < 3/2 in (50) then again, by (48) and (49), inequality (45) holds with
I' = 2 and we are done. If y* ~ 3/2 then we continue this procedure each
step of which lowers )'* in the analogues of (47) and (50) by 1/2 and,
simultaneously, raises the value of y in (45) by I. After no more than
[2/,*] - I steps 12 this procedure terminates and then (45) holds with
,'~[21'*J.

12 Here [ . ] denotes the il/leger part.
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Case Ivhen (40) Holds. The inequality Il'(Z) ~ D Icos ex-cos 01 for
almost every z = eili E L1 ex can be proved along the lines of the case when
(39) holds. Namely, by (46) and (48) (cf. (33) and (40)),

D -1/2~· j2n sup max Icos ex - cos OJ 1/2 l<pl/(/I, z)J < w,
"EN ::E.::1:::l

which is the analogue of (45), and then we just repeat the argument used
to obtain a lower estimate for Il' from (45), that is, use Lemma 2. I

Remark 13. F. Peherstorfer and R. Steinbauer used a different
approach in [35] to study the asymptotic behavior of orthogonal polyno
mials with asymptotically periodic recurrence coefficients.

The following theorem is a useful summary of two inequalities proved in
the proof of Theorem 12.

THEOREM 14. Let Il be a probability measure on T having an infinite
support. Given a E iC with 0 < lal < 1, let ex E (0, n) be defined by cos(ex/2) ~
jl - lal 2

. (f the reflection coefficients {q>k(/l, O)} I.E N of the corresponding
orthogonal polynomials sati.lIi'

L Irkq>k(,I, 0) - al <OC,

k~1

aEC, 0<lal<1, rET, (51 )

then for every closed circular subarc 13 t1 c r L1~ we have

sup max 1<P,,(/l, z)i < 00.
n E F\I =E I{'

If

(52)

then

I. k Irkq>k(/l, 0) - al < OC',

k~1

aEC, O<lal<l, rET, (53)

maxoETJ, l<pl/(Il, z)1
sup < w.
I/EN n

(54)

Proof of Theorem 14. Just like in the proof of Theorem 12, it is suf
ficient to prove the theorem for r = 1. In addition, again as in the proof of

13 Recall that the circular arcs A, (closed) and L1 ~ (open) have been defined in (13) and
(14). The rotation of a circular arc A by arg r for r E lr is denoted by r A.
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Theorem 12, in view of (32) and (41), either of the assumptions (51) and
(53) imply

so that we need to estimate ItPlI(p, z)1 only. If (51) holds then (52)
follows from (42), whereas if (53) holds then (54) follows from (46) (ef.

(33)). I

Remark 15. F. Peherstorfer and R. Steinbauer used a different approach
in [36, Proposition 2.1] to prove (52) in Theorem 14.

5. PERTURBATION ANALYSIS (CONTINUED)

The condition Lk E "J It:/Jk(P, 0) - al < if) can be weakened. To do this one
needs to write the perturbation series in a multiplicative way, much as it
is done in [34] and [31]. Clearly, by (8) and (32),

flEN,

where

Q del' 1 (z a)(a z) = --;===, J1-la 12 zii 1 .

Writing

one obtains

BII(p, a, z) = BII _,(II, a, z) +Q-II(a, z) E,,(p, a, z) Q/1-I(a, z) B,, __ l(/i, a, z)

= (l +Q -"(a, z) EII(p, a, z) Q"-l(a, z)) B,,_,(/i, a, z),
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and then iterating this yields

I), n E I":J,
-I

where the matrix product is meant to be taken from the right (k = I ) to the
left (k = n). Observe that

and

I (IQ "(a :)=-
, 2:" I

I )(~,;(:)
-I rP,;(:)

(cf. (36)). We can thus formulate the following result.

THEOREM 16. Suppose the infinite matrix product

Jn (/+Q -k(a,:)Ek(/l,a,:)Qk I(a,:))
k ~ I

converges (conditionally) in the open circular arc L1~. Then

(55)

exists in L1 ~.

The interesting and challenging problem is to describe the condi
tional convergence of (55) in terms of (/Jk(/l, 0) - a. For instance, if
L(~ 1 [(/Jk{fl, 0) -a] converges (conditionally) and L:~ 1 I(/Jdll, 0) -al ~ < 00,

then what additional conditions (if any) are needed to assure the con
vergence of (55)7

6. AN EXAMPLE

EXAMPLE 17. Given x E [0, n), y> - I, and J> - I, consider the
absolutely continuous measure fl in [0, 2n) with

') '!.':' JC !cosO-cos<xl; Icos(O/2)\" Isin(O/2)1 if OE(oc,2n:-oc),
,uU)-)O if ()E[0,2n)\(x,2n-x),
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where the normalizing factor C > 0 is chosen in such a way that p( If) = 1.
Then the reflection coefficients for this measure satisfy

b cos2( a:/2 )
fP,,(II, 0) = sin(a:/2) + (-I r ---

211

cos(a/2) cot(a:/.2. ) ( 2 .. ' 8'''' )
+ . , .~ - - u- + )'- + u- cos a:

16w

15 cos 2
( (12)

-( _1)1/ --,- (I +15 + 2)' -sin(aI2))
4w

+ O( l/n'), n EN. (56)

In particular, for this measure p and for a ~sin( aI2), formulas (37) and
(38) hold if and only ifJ = 0, whereas formulas (39) and (40) hold if and
only if 6 = 0 and ;/ = 1/4. This is in complete agreement with Theorem 12.
The case 6 = 0 and y2 = 1;4 corresponds to the Lee-Yang weight function
associated with the one dimensional Ising model (cf. [24, formula (45),
p.416]).

Pro(){ (){ (56 ). First we make a transition from the unit circle to the real
line (cf. [42, § 11.5, p. 294]). The relevant weight function on the real line is
(cos a - xr' (1 + Xli"~ - 11/2 supported in [-1, cos al If we map the interval
[ - I, cos a] to [ - I, 1] by the affine transformation x f-+ ( 2x + I - cos a )/
( I + cos a), then the orthogonal polynomials will be the Jacobi polynomials
P~i"" (,j. 11/2 1, and, hence, the orthogonal polynomials on [-I, cos a] are
P:,''o I"~ - Ilill( (2x + I - cos x )/( I + cos x)). The monic orthogonal polynomials
are given by

dcf (2n + I' + (J - I)/2) - I
P,k'() = (I +COSIX)"

n

X pi;'. I,j 11/21 (2X + I - cos IX)

1/ I + cos a '
/lEN.

The reflection coefficients fP 1/( jl, 0) can be obtained from these monic poly
nomials by

and I 0 = RIl(1 )+ RIl( - I )
fP 21/ + I (I, ) - RI/( I ) - RI/( - I )
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where R" =del P,,+ dP" (cf. [16, Theorem 31.1, p.67] or [15, Theorem X,
p. 758]). In our case, we have

(n + l)(n + y + 1>/2 + 1/2)
R,J 1) = (1 + cos oc) (2n +,' + 1>/2 + 1/2)(2n +,' + 1>/2 + 3/2)

XP~/+I;j - 11/:\ (3 - cose): )/( 1 + cos:x))
p~i" I,) 11/"'( (3 - cos:x )/( 1 + cos :x))

and

(n + 1>/2 + 1/2)(n +)' + 1>/2 + 1/2)
R ( - 1) = - (1+ cos :x) ---'---------'--'---'---

" (2n +)' + 1>/2 + 1/2)(2n + y + 1>/2 + 3/2)

where we used the fact that P~i" 1<) 1)/2 I( - 1) = ( - 1)" (" + I,)" 11/2) (cf. [42,
formula (4.1.4), p. 59]). We have

(n+ 1)(n+y+I>/2+ 1/2)

(2/1 + Y+ 1>/2 + 1/2)(2n + y + 6/2 + 3/2 )

1 6 1- 46 - 15 2
- 4i5y - 4y2 _

= 4- + -8 + 64 7 + O( n .1),n n-

(n EN) which leads to

11 EN.

For estimating R,,( I), we need an asymptotic expression for the ratio of
two consecutive Jacobi polynomials at the point (3 - cos oc)/(l + cos oc) > 1.

LEMMA 18. Given a> -I, b> - I, and x> I, the Jacobi polynomials
{ pia. h)} normalized hv pta. h)( I) = (" + a) satis")' the ratio aSVt1lptotics

11 nEN ~ n 11 'J." ~

(/1 + I )( n +a + b + 1) P~'./il (x)

(2n +a + b + 2)(2n + a + h + I) P~:J· h)(X)

x+ j X2-1( A(x,a,b) -1)
=- 4-- 1-~-+O(n ), n EN,
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dd b2
a

2

A(x, a, h) = -- r:T1-~-"~-=o="
x+ I +yx--I x-I +v!x--I

I I
+- .

4 v!x 2
- I (x + v!x 2

- I)
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Proof of Lemma 18. By the asymptotic expansion [9, formula (2.13)]

pi a. hi -r = T( 2n + a + b + I )
II (.) 2211+la+h+lli2r(n+l)T(n+a+h+l)

(x+v!x2 _1)"·t-(a+h+I I/2 J ak(y)

x (x _ 1 );2a + I ;4 (x + I )I 2h + I 1/4 k~() (211 + a + h + 1)k'
nE N,

where x = cosh 2y ¢ [ -I, I], a straightforward (but rather tedious) com
putation readily leads to the desired result taking into account that a o == I
and A(x,a,h)==al(y). The function at can be computed explicitly, by

1 ff.l 2a
2

2b
2

I 1a t ( v) == -- - -. 0 elt
. 2 r cosh(21) - 1 cosh(2t) + I smh-(2/)

(see [9, formulas (2.8) and (2.12)]). Simple calculus gives

and

• f ell

J, sinh 2( 21) e4 \ - I '2v!x 2
- I (x + v!x2 -1)

which yields the desired expression for A(x, a, h). I

Continuing with our computation, simple trigonometry shows 14

r:T1 2( 1+ sin(iX/2))2
x = ( 3 - cos ex)/( I + cos IX) = X + Y x- - 1=,

1+ cos IX

14 Curiously, Mathematica jlliled to prove this even though it was used successfully to per
form and/or to double check much or the computation in this section.
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so that, by the lemma,

_(1+sin(ex/2))2(I_ A(X,Y,(O-I)/2l . -J)
R,,( I ) - 0 + O( n ).

2 2n-

Combining the formulas for R,,( - I ) and R,,( I) gives

. 6 cos2( ex/2 )
(/>2,,(,1,0) == R,,( I ) - R,,( - I ) - I = sm( ex/2) + -----'--

4n

cos(ex/2)cot(ex/2) "0 o. '0+--. 0 (-2+20-0-+8y--20cosex+o'cosrx
64n-

and

-46 sin(ex/2) - 462sin(ex/2) - 86y sin(rx/2)) + O(n'), n EN,

rh ( O)_R,,(1)+R,,(-I)_. ( i2) 6cos
2
(ex/2)

'1-'0 I II - - sm ex, -
-,,+ ~, - R

I1
( I) - R

I1
( -I)' 4n

cos( rx/2) cot( rx/2) . -0 o. -0
+ -_... 0 ( - 2 - 20 - 6- + 8y' + 20 cos ex + (j- cos rx

64n-

+ 126 sin( rx/2) + 462sin( a/2) + 86y sin( rx/2)) + O( n- J), n E I'<:J,

that is,

. . 6 cos2(ex/2)
(/>2" + j(ll, 0) = sm(rx/2) - 2(2n + 1)

cos( ex/2) cot( ex/2) _ -0 0' -0+ 0 ( - 2 - 26 - 0- + 8," + 20 cos a + ()- cos ex
16(2n+I)-

+ 46 sin( ex/2) + 4()2 sin( a/2) + 8opin( ex/2)) + O( n- 3), n E 1'\1,

and, therefore, we have proved (56). I
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