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Orthogonal polynomials on the unit circle are completely determined by their
reflection coefficients through the Szegé recurrences. We assume that the reflection
coefficients converge to some complex number a with 0 < |a| < |. The polynomials
then live essentially on the arc¢ {e’” ta €0 2n —af where cos(a/2) & \/] —Jal?
with a e (0, 7). We analyze the orthogonal polynomials by comparing them with the
orthogonal polynomials with constant reflection coeflicients, which were studied
earlier by Ya. L. Geronimus and N. 1. Akhiezer. In particular, we show that under
certain assumptions on the rate of convergence of the reflection coefficients the
orthogonality measure will be absolutely continuous on the arc. In addition, we
also prove the unit circle analogue of M. G. Krein’s characterization of compactly
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PERTURBATION OF ORTHOGONAL POLYNOMIALS 393

supported nonnegative Borel measures on the real line whose support contains one
single limit point in terms of the corresponding system of orthogonal polyno-
mials. 7 1995 Academic Press. Inc.

1. INTRODUCTION

Orthogonal polynomials on the unit circle T o {zeC:|z[=1} are
defined by

JN @) @, (wydu=9d,, . mn=0,1,2, ..,
T

where
@1, 2y =K, () =" + lower degree terms, K {p)>0,

and g is a probability measure in [0, 2n) with infinite support. Here and
m what follows, for simplicity, we refer to 4 as a probability measure on

T, if fis a function on T then L, fdu = [3* f(z) du(0) where :—c'" and,
for instance, if ' is the Radon-Nikodym derivative of g then p'(z )& ;1 "(8)
if z=¢" with 0€[0, 2r). Standard references are books by Szegd [42],
Freud {11], Grenander and Szegé [20], Geronimus [18], and two
reasonably recent surveys [22] and [30].

These orthogonal polynomials satisfy the (Szegd) recurrences

Ky ) @ulp sy =ck,p) @, (i 2)

+@,(1, 0) o) (1, 2), neN, (1)
Ky ) @ 2y =w,) o} (1, 2)

+z¢,(1, 0) @, (e, 2), nenN, (2)

(cf. [42, formula (11.4.7), p. 293] and [ 18, formulas (1.2) and (1.2}, p. 6])
where the reversed *-polynomial of a polynomial p,, of degree n is given by
Pz ) = z"p,(1/2). The monic orthogonal polynomials are @, (u) o
K, (1) () and then the Szegd recurrences take the form

<¢,,Ut,:)>: K4t ( z ¢n(u,0)><<ﬂnq(ﬂ.:)> N
(p:(lu’:) Ku ](,u) :¢n(,u’0) l (P:,](/l.:) : ’

and
<(pn(.u':)):< ot ®n(“w0)><®nfl(ﬂ9:)> HEN
DXy, z) =P, (1, 0) 1 &* (u,2)) '
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The coefficients {®,(x, 0)} ., describe completely not only the monic
orthogonal polynomials on T, but also the orthonormal polynomials since

K W)y g Lo &
K(4)
” e
mm%H(l—lqbkw,ﬂ)l:) » nel, )
k=1

(cf. [18, p. 7]). The coeffictents { P, (u, 0)}, . are known as reflection and/
or recursion and/or Szegd and/or Schur coeflicients.'

Perhaps the easiest proof of (1) (and (2)) is using another set of (equiv-
alent Szegd) recurrences which can be stated as

Klp) X 2y =x, () @¥ (1 2)+ @1, 0) @,lu, 2), neN, (4)

or, equivalently,

K o2y =Y 00 0) pplp.z). neN. (5)

k=0

The latter follows directly from the fact that on the unit circle 2= 1/z, and,
thus, two naturally arising extremal problems will have the same solutions
(cf. [42, formula (11.4.7), p. 2937 and {11, Theorem 5.1.8, p. 1957). If we
replace n by n+ 1 in (1) and then eliminate ¢*(u) from it using (5), we
obtain

Kolgt)
:(P,,(/I.Z)Z . (pn+l(/l~:’
hn+ ](lu)

"l l) o
_ ;iz—ilw)(D,,H(y,O)<15k(;t,0)(pk(,z1,:), neN, (6)
k=0 "n

which is the orthogonal Fourier expansion of ze,(s, z) in terms of the
orthogonal polynomial system {@, (1)} ,. The latter formula is useful
when considering matrix representation of the multiplication operator in
terms of {@,(#)}, .~ (cf. Section 3).

Since all the zeros of @, are inside the unit circle (cf. [18, Section §,
p. 91, |®,(1, 0)| <1 for ne N. Conversely, when {®,(0)},_,, is a sequence
of complex numbers with |®,(0)] <1, then, by Favard’s theorem on T (cf.
[8] and [10]), the polynomials obtained by the Szegé recurrences are
orthogonal with respect to a unique probability measure ¢ on T with
infinite support so that @,(0)=®&,(x, 0) for neN.

! Sometimes the sequence { — @, (4, 0)} .« is referred to by these names.
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Szegé’s theory deals with the case when

logu' e L"(T) <= Z|(p,\,(,u,0)]2<oo < lim k()< oo

k=1 -

A

= P#Lp,T) <« [](1-[@u.0)*)>0

k=1

< Y @, 0) <o (7)

k=1
where P denotes the set of all algebraic polynomials with complex coef-
ficients (cf. [42], [20], [18], or [15, Theorem VI, p.751] and the
references therein). Hence, under Szegd’s condition, lim, , B @,{(x, 0)=0
always holds. The simplest case is when @,(u, 0) =0 for e N which gives

<%<ﬂ-:)>:<: 0><<p,.-l(u,:)>
oXu, ) 0 [/\e¥ (1 2)
E NS NS

(o ) ()= e

Given a probability measure 4 on T with infinite support, in addition to
{@.l10)}, . we will also study polynomials of the second kind {y, (1)}, .~
which are defined as the orthogonal polynomials with reflection coeflicients
{ —®,(t, 0)} ... They can be computed simultaneously with the polyno-
mials ¢, () by Szegb type matrix recursions such as

<(ﬂ.,(ll~3) w,,m.:)): _h_‘_,_,_(_g)m< z 45,,(#.0))

(P:‘.u’ :) _'1//:(.“’ :) Knv l(ﬂ) :¢n(ﬂ* 0) l
(pnﬂl(lu':) l//n— l(/l":)>
. 8
X<(P:..- a2y =¥k (w1, 0) ®)

The advantage of using a matrix recurrence relation as opposed to a vector
recursion is that one can manipulate inverse matrices whereas vectors are
not invertible.

Since

@i, ) W (u, o)

= -2-" neN, (9
(P:(/l. :) _l/,;r(ﬂ’ :) )

*Note that the second kind orthogonal polynomials associated with the second kind
orthogonal polynomials are the orthogonal polynomials one started with, as opposed to the
case of orthogonal polynomials on the real line where this procedure leads to the notion of
associated polynomials.
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(cf. [18, formula (1.17), p. 11]), we have
<o, (. )| Wlp, 2. zeT, neN, (10)

for every system of orthogonal polynomials on T. In particular, if the
orthogonal polynomials are bounded from above at a point on T, then the
second kind orthogonal polynomials are bounded from below at the same
point, and vice versa. This leads us to the following simple but useful

LEMMA 1. Let p be a probability measure on T having an infinite sup-
port. Assume that there is a closed circular arc A< T and an infinite subset
N* < N such that the second kind orthogonal polvnomials { (1)} . s are
uniformly bounded in A. Then j1e AC(4).

Proof of Lemma 1. First, it follows from inequality (10) that the
uniform boundedness of {¥,(, z)}, .. in 4 implies the divergence of the
series 3, 1. |@«(ge, )7 in 4 so that x4 has no mass points in 4 (cf. [15,
Theorem VI, p. 750]). Second, for every such probability measure .,

-2

1 2= :
lim ———J 1 (2) |, (p,2)) 2 dO= [ 1 . ey, z=e", (11)
T Yo Y1

n - s 2

where 1 ;. denotes the characteristic function of an arbitrary circular arc
A* < A (cf. [27, Lemma 4.2, p. 248]%) so that by (10)

A*) < |4*| sup max [y, (p 2)°  A*<= 4,

ner™ -ea*

where |A4*| denotes the normalized arc-length of A*, and, therefore,
HeAC4). 1

The following lemma is equally simple and equally useful.

LEMMA 2. Let p be a probability measure on T having an infinite sup-
port. Then the inequality

1/0(0)<2x limsup |o,(u, 2)|°  forae z=e"eT, (12)

u(e N*)— o

holds for each infinite N* = N. In particular, if there is a closed circular arc
A< T and an infinite subset N* C N such that the orthogonal polynomials
{910}, nn are uniformly bounded in A, then /i’ € L™(A).

*To be precise, in [27, Lemma 4.2, p. 248] the analogue of this is proved for continuous
functions which then extends to all Riemann-Stieltjes integrable functions by one-sided
approximation, and if ;¢ has no mass points in 4 then 1 ,. is Riemann-Stieltjes integrable for
all 4*c 4.



PERTURBATION OF ORTHOGONAL POLYNOMIALS 397

Proof of Lemma 2. By [27, Lemma 4.2, p. 248 ] (cf. the footnote in the
proof of Lemma 1) formula (11) holds if 1. is the characteristic function
of an arbitrary circular arc 4* as long as the endpoints of 4* are not mass
points of x. Hence, a simple application of Fatou’s lemma completes the
proof. J

We are interested in orthogonal polynomials {¢,(#)},_. on the unit cir-
cle satisfying either lim, @, (u,0}=a or the seemingly more general
lim,_ , t"®, (g, 0)=ua where ae C with 0 <]a| <1 and 7€ T. We want to
compare such orthogonal polynomials with the system of orthogonal poly-
nomials with constant reflection coefficients {a},_,. The latter polyno-
mials have been studied earlier by Geronimus and Akhiezer in, for
instance, [ 19, p. 93], [14]. [17. §4.3], and [1].

As far as lim, , , @,(x, 0)=0 goes, this not only follows from Szegd’s
condition log ' € L'(T) but it also holds whenever u’ is positive almost
everywhere in T. The latter was proved by Rakhmanov (cf. [37,
Theorem 1, p. 105]). As a matter of fact,

o2r iry|2
j'>0ae < lim supJ i%ﬂ'—e—%l—,~l dt=0
n-x letN 70 [(P'r+/(1u’ e )'_
and
lim @,(s,0)=0< lim inf | Ao D] 4 g
" a— > leh Jg l@,,+/([1, € )'-

(cf. [26, Theorems 2 and 3, p. 64], [32, Theorem 1.1, p. 2957, [33,
Theorem 4, p. 325], and [23, Theorem B, p. 192]).
Finally, we mention

Y (@1, 0)| <o = pueAC(T) & (4)*'eC(T)

n=1

(cf. [ 18, Theorem 8.5, p. 163]), and

Y 1P, 0. 0) <oce>pueAC(T) & (u')*'eC(T)

n=1

& Y

J-—ﬂ ™ du( f)I <%0

0

{cf. [3. Theorem 8.1, p. 483]).
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2. THE CASE OF CONSTANT REFLECTION COEFFICIENTS

Given a¢ € C with 0 < |a| <1, let x4, denote the probability measure on T
for which the corresponding orthogonal polynomials satisfy @,(u,,0)=a
for neN. For sake of convenience, we will denote the corresponding
orthogonal polynomials and second kind orthogonal polynomials by @,
and ,, respectively, that is, (/7,, = (p,,(,u,, ) and w,, = (//,,(/1” ) for neN. In
addition,

& 1= al> xe(0, m), (13)

A, ¥ (" a<0<2n—a} and 49 [ x<0<2n—al. (14)

&

cos

R

With this notation, for ne N the orthogonal polynomials with constant
reflection coefficients {a} , _. are given by

ne;

<(pu(:)> l <: (l><¢" ](:)>
GX:) \/] la|?\za  L/\@) (2)
(cf. (3)). Similarly,

R - - 23 1
—a = (2 () s
(uﬁ,,(:)

) 3N
VAV EVEACE
:(l—lalz)"”(f:a —lc:)G) (16)

(::a il>=V<:(; 0> po

where z, and =, are the eigenvalues of (2, ). Then

a |

"+l+\/ —e™)z—e ™) :+l—\/(':——m

- -
5 =

o = 2 ] ~ 2 i

For - #e™*"™, write

where that branch of the square root is chosen for which

S z—e )
llm ~—-""———*‘-:1

Z z
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Then

_ Az{+ Bz}

C=y+ D24
pul2) =5, . =
P =0 Tapn

————— =01, .,
(T—jaiy= "

HOE

where A, B, C, and D are functions of z which do not depend on . Setting
n=0 and n=1 one can evaluate 4, B, C, and D, which yields

1 :n_:t; , :n»»]__:th:fl
@.,(Z)ZM“T,S((:-F“) . '——'(l—lal')——“———:~>. ne N,
(1—Ja)*)™" o Bt e .
(17
and
- 1 - , oot
(p”(:):m (l+a:)” ——z(1—a]”) ——————— ), neN.
— lal®) Iy~ o2 1T Iz
(18)
Similarly,
. i " M- A
d/,,(:):—]—_Ta'z)M (z—a)- — =zl —lal]*) ———— ), nelN,
o e =S By
{19)
and
- ] - LA
l//"(:):(_l_——l——ﬁ‘s (I -az)———:z(1—la|") ———— |, neN,
—lal™) ST 15
(20)

When z=¢" with a <0 <2r—x then |z,| =|z,| =+/1 —|a|’. and, hence,
there is a constant C > 0 such that

|,(2)] < C min(n, v (0)), z=¢% zed, neN, (21
where

v A0)  sin g |cos a —cos 0] "2, (22)

and, therefore, for every 0 <& < — « there is a constant C(¢) > 0 such that

[@,(2) < Cle), c=e¢" a+e<O0<L2n—a—¢ neNN. (23)
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In other words, given a fixed norm for 2 x 2 matrices, in view of (9),
(21), and (23), there is a constant C* >0 such that

\\(5’:’ i g;{i;) o <C*min(n, v,(0)), z=¢" zed,, neN,
(24)
and for every 0 <¢ <7 —« there is a constant C*(¢) > 0 such that
N((p” :: _53((2)))i‘H<C*(5), z=e" ate<O<In—a—¢, neN.
(25)

For these polynomials we have

CO0+a | 80—«
P sin sin 3
J‘ (pn( ) (Pm( ) d()
x . 0—
27 sin p
+.}/f(pn(() ) (pm( I/}) (5m "o L= em’ m,ne Z +*
with
2a]*—a—a
Cl—a ZlaPzaza e s
(,‘/-:_..‘1 -, J/J’: “'—al
—da .
0, if 1 —2a4) <1

(cf. [ 19, formulas {X1.26) and (X1.27), p. 94 .4

3. SPECTRAL ANALYSIS

For orthogonal polynomials on the real line there is an intimate rela-
tionship with infinite Jacobi matrices containing the coefficients of the
three-term recurrence relation for the orthonormal polynomials. These
Jacobi matrices are symmetric tridiagonal matrices which can be extended
to self-adjoint operators acting on the Hilbert space /,(N). Applying results
from perturbation theory of self-adjoint operators then allow the inter-
pretation of spectral properties of the Jacobi matrix as properties of the
orthogonality measure. Such properties include (but are not limited to)

* N.B. that our a corresponds to —d in [19] (see footnote 2).
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information about its support and enables one to study its absolute con-
tinuity.

For orthogonal polynomials on the unit circle there is a similar rela-
tionship with infinite matrices, but instead of a self-adjoint tridiagonal
matrix (for determinate moment problems on the real line) one deals with
a unitary Hessenberg matrix (for measures outside the Szegd class).

Given a probability measure g on T with infinite support, let L*(u, T)
denote the Hilbert space of measurable, square-integrable functions on the
unit circle T with the scalar product and norm

G, 2| fede  and 111, E ST

By a theorem of A.N.Kolmogorov and M. G. Krein, the system
{@, (1)} 7_, forms an orthonormal basis in L(u, T) if and only if log u’ ¢
LYT) (cf. (7) and [20, Theorem 3.3(a), p. 49]). All measures ¢ considered
in this section are such that logg'¢ L'(T).

In our investigations a key role is played by the unitary multiplication
operator U(g): L¥u, T)— L3y, T) defined by

[UG fy =11, teT, feL*u, T), (26)

and its matrix representation U(x) in the orthonormal basis {¢,(u)} 7_,.
By (3) and {6} we have

Ugp Uy
U(/l): U U s uy= U @), @10 )y (27)
where
- j+1(l‘~0)(pi(/‘;6)ni=i+l(1_|(pk(/‘s0)|2)l'/2* i<j+1,
=4 (1 =10, (1. 0)1)'7, i=j+1.  (28)
0, i>j+ 1.

for i,j=0,1,.. (cf. [43, formula (3), p.409] and for a doubly infinite
analogue see [ 13]). Infinite matrices such as (27)—(28) in which all entries
below the subdiagonal vanish are called (upper) Hessenberg matrices.

We can view the infinite matrix (27)~(28) as a unitary operator Ulu):
1,(N) — IL(N) which is unitarily equivalent to the multiplication operator
Ulu). In particular, supp(y) is equal to the spectrum of U(u).

THEOREM 3 (Geronimus, 1941). Let u be a probability measure on T
with infinite support, and let {@, (1)} 7_, be the corresponding orthogonal
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polynomials. Suppose lim,,  , @,(u,0)=a, where ae C with 0 <|a] <1. Let
cos(a/2) V1 la|* where a€ (0, n) and 4, & {e y<0<2m—7y}. Then
A, S supp(u) and supp(p)\A4 is finite for cvery 0 < f <a.

Remark 4. Geronimus [ 14, Theorem I’, p. 205] used continued frac-
tions to prove Theorem 3, whereas our proof is based on the spectral
theory of unitary operators.’

»»

Remark 5. The statement that “supp(u)\4, is finite for every 0 < f <a
is just another way of saying that supp(z)\4, is at most countable whose
limit points (if any) must belong to 4,.

Proof of Theorem 3. Along with the multiplication operator U(u) (cf.
(26)) consider the multiplication operator U(x,) on the space L*(x,, T)
where the measure g, corresponds to the constant reflection coefficients
@, (1,,0)=a for neN (see Section2). To study both these operators
simultaneously consider their matrix representations U(/z) {cf. (27)—(28))
and

Upp Uy
U(ﬂu)z Uy Uy 0 | u[’/:<U(/lu)(p‘j(,uu)ﬂ(PI(/lU)}u‘,'
where
—a(l —|al?)’"?, i=0,
—lal> (1 = a2 D<i<j+1,
T (1= ay P=j+1,
0, i>j+1.

for 7, j=0, 1, .... This follows from (27)-(28) applied with s replaced by #,,.
Both U(,u) and U(,u‘,) are unitary operators acting on the same Hilbert
space I,(N). As discussed in Section 2, the continuous spectrum of U, ) is
the arc 4,, and, in addition, U(x,) may have at most one ¢cigenvalue which
must be in T but is located outside this arc. Let S:/,(N)— /5(N) be the
shift operator given by the matrix representation

th
1l
oo o o
Lo o o -
Lo o = O
o — o o

*N.B. Instead of 4, < supp(z), Geronimus claims 4, Ssupp(u), but, of course, supp{u) is
closed.
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Then we can write U(u) as
Ou)=S*D_ )+ Y, D,iu) S (29)
i=0

where $* is the adjoint of S and each D,(p): I(N)— [,(N) is a diagonal
matrix whose main diagonal is equal to the Jjth diagonal above the main
diagonal of U(u), that is,

{-¢/+r’+l(/‘ﬁ0)¢(/[ 0)
diag D, (u) = <L V=D, 07} 7y jeZ?
{Vl_l‘b NOIJ,() J=-1

This infinite series representation for U(u) converges in the operator norm.
To see this note that ||S|| =1 and

i+
0D (ol =sup 1D, a1, 0) D (1, O JT /1= 1@ulp, 0))2
iz20 k=i+1
i+
<sup [] /1 [@(u O, (30)
20 k=i+1

for jeZ ™ since |@,(u, 0)) <1 for neN. If lim,_ , @,(u,0)=a with a0
then {[LD,-(/J)H}_,’Z , decreases exponentially, and, therefore the series in
{29) converges uniformly.

Similarly, we can write {{(y,) as a uniformly convergent series

(/l(l) S*D,l(,ll Z D[()uu)Sj'
j=0

Now consider the difference U(u) — U(;z,,). Given j= —1,0, 1, .., the dif-
ference D;(u) — D;{u,) is a compact operator since it is a diagonal operator
for which the entries converge to zero. Linear combinations of compact
operators and the product of a compact operator with a bounded operator
remain compact. Moreover, the set of compact operators on a Hilbert
space is closed. Hence, U(u)— U(u,) is a compact operator. But then
H. Weyl’s theorem® says that, except for eigenvalues, the spectra of U(u)
and U(u,) are the same. Since the spectra of U(x) and U(u,) are equal to
the supports of u and u,, respectively, this is precisely what had to be

© Weyl proved his theorem for self-adjoint operators. We are using a more general version
as given in [ 21, Problem 143, p. 1] and [44. Proposition 1, p. 62].
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proved in view of the constant reflection coefficient case discussed in
Section 2. |

We finish this section by proving the unit circle analogue of M. G. Krein’s
characterization of compactly supported nonnegative Borel measures on
the real line whose support contains one single limit point, in terms of the
corresponding system of orthogonal polynomials (cf. [2, Theorem 3,
p-2317 and [4, Theorem 4.3.5, p. 117]). The general case which deals with
finitely many limit points just as M. G. Krein dealt with measures on the
real line (cf. [2, Theorem 2, p.230] and [4, Theorem4.6.2, p.137])
remains open.

THEOREM 6. Let o be a probability measure on T having an infinite
support, and let T€ T. Then the following statements are equivalent.
(i) The derived set of the support of p is equal to {1}.

(it)  We have lim, _, | f o017 du=f(1) for every p-measurable
Sfunction f which is bounded on T and continuous at 1.

(iil)  We have tim,_, , {; fo,(1) @, () du=f(7) 8y, for all keZ
and uniformly in ke Z™ for every p-measurable function f which is bounded
on T and continuous at 1.

(iv) We have lim, _, , [; z @ u, 2)|” du(0) =T where == ¢”.

(v} We have lim, , h 2P, 2) @l D) du(0Y =1 0 i for all
keZ and uniformly in keZ* where z=¢".

(vi) We have lim D, (10D, (1, 0)= —1.

n—

Proof of Theorem 6. For sake of brevity, ¢ is denoted by = in all
integrals.

(1)=(ii): Fix ¢>0. Then, since ¢,’s are orthonormal,

'Lfl%(ﬂ)lzdﬂ —f(x)

= )L [/(2) =0 (9., 2)1? du()

<[ 1A =100 g2 dut0)
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=[O A0 e ) dul0)

Vit <e

+f,_ . LA =S e 22 du(0)

< swp AR =fO1+] =10 et I o),
= -1l<e ooz
It is well known that for every z=¢"eT we have Y, lo. (1.2}’ <

[u({0})] " This follows, for instance, from the extremal property satisfied
by the ChrlstofTe] functions {cf. {42, Theorem 11.3.1, p. 2901).7 By (i), the

set 4, = supp(,u) {zeT:|z—1]>¢} is a finite collection of mass points
of i so that 37 , [@.(u. 2)|? converges uniformly on A,. In particular,
lim, ,, l(p,, )] =0 uniformly on 4, so that lim, ., {_ ., |f(z)—f(7)|

|@, (4. 2))* du = 0. Therefore,

lim sup

n— oz

[ 1o du—fnr < sup 17z fiol

Iz~ tl<e

Letting ¢ — 0 yields (ii).
(11} < (11): (i) 1s a special case of (111) whereas “(11) = (iii)” is proved
as follows. Given ke Z and n = —k, by orthogonality we have

| S0 10) 9 T = f(2) 8.
T

J [/ ] (pn ,“, “) g0n+/\(lu' ’) dﬂ(())

so that Cauchy-Schwarz’s inequality yields

5

l J‘T_r .f(ﬂn( ﬂ) (pn +k‘/l) (llll _f(T) a‘()‘ k S fﬂ 'f(:) —/( t)|: ,(Pn(/u’ :)l 2 (J,U(())

Therefore, (1ii) follows directly from (ii).

(in)=>{v): This 1s straightforward by letting f(z é‘ -

{iv) <> (v): (1v) is a special case of (v) whereas ¢ ( v)=>(v)” is proved
as follows. Given ke Z and n = —k, by orthogonality we have

J’ n(tu -’)(pn+lx(iu —)d/‘({))*TaOA‘I —T (Pn(/l»~)(pn+1\ £ -)(#l({))
T

T Actually, we have 3 7_ 1@, 2)1> = [u({0})] ", but the latter is a bit harder to prove
as opposed to the inequality, which is straightforward (cf. formula (7) on p. 453 and its proof
on pp.444-445 in Szegd's extremum problem on the unit circle by A. Maté, P. Nevai, and
V. Totik, Ann. Math. 134 (1991), 433-453).
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Hence, Cauchy-Schwarz’'s inequality combined with (iv) and ¢,’s
orthonormality yields

5

l ’A (pn(l“* :) (pn+k(}l* :) dﬂ(”) -7 6(),k
“T
<[ =l g 2 dut)
.

=2-2R {fj z @ 2))? d,u(())} =0
T

so that (v) holds.

(iv)<>(vi): This follows by observing that, according to (6),
_‘-Tf z I(ﬂn(/u’ :)IZ d/l = _¢n + l(lu’ 0) djn(/u' 0)

{(vi=(i): Consider U(u) defined by (26) and it matrix representation
U(;L) given by (27)—(28). Just like in the proof of Theorem 3 and borrow-
ing the notation from there, write U(u) as

Olp)=S*D_,(u)+ Y. Di(pn) S (31)
j=0
where D;(u) is a diagonal matrix whose diagonal is equal to the jth
diagonal above the main diagonal of U(u), that is,

diag D, (1) = UGu) @, 4 (1), @,(10)D,,

o

- “, 20, ultts 2 0,12 dﬂ({))}
¢ )

t =0

for j=—-1,0,1, ...

Thus, the entries on the main diagonal of Dy(u)—tl and, for each j#0,
the entries on the main diagonal of D,(u) converge to 0 whenever (v)
holds, that is, Do(x) — 71 and each such D;(u) are compact operators.®

By (vi) (which is equivalent to (v)) and
l¢n+l(/l’0)¢n(ﬂ’0”<l(pn(ﬂ‘o)]<11 HEN,

we have lim,_, , [®@,(¢,0)] =1. Thus, by (30), {|D;(x)}~ _, decreases
exponentially, and then the series in (31) converges in the operator norm.
Hence, U(p) —1l: [,(N)—/,(N) is a compact operator.

# 1 denotes the identity matrix.
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According to a theorem of F. Riesz and J. Schauder (cf. [40, Section 79,
p. 1871 and [39, Theorem VI.15, p.203]) the spectrum of the operator
U(u) — 1 is an at most countable set with no limit point except possibly
zero. Since supp(x) is an infinite set, the spectrum of the unitary operator
Uy)=(O(u)-t1)+ 7l is a countable set, it lies on the unit circle, and its
only limit point is {t}. This is precisely what is stated in (i) since the
spectrum of U(y) is equal to supp(u). |

Remark 7. Geronimus points out that the one-point version of M. G.
Krein’s theorem (which was known to Stieltjes [41, note on p. 564-5707)
may be paraphrased as follows (cf. [16, Theorem 32.2, p. 72]). If the
sequence {@,(u, 0)}, . is real then the derived set of the support of u is
equal to { —1} whenever

lim (14+@ (1, )1 =D, (1,0))=0.

n- o

It is easy to see that for real sequences {@,(u, 0)},_, Geronimus’ condi-
tion holds if and only if lim, , , @, (%, 0) @,(u, 0)=1.

As a matter of fact, for real sequences {a,e(—1,1)},_ or even for
{a,e[ —1,11}, .. the conditions (i) lim, , , a,=a where a is either | or
-1, () lim,_ , a,a,,,=1, and (1i1) lim (t+a,(1—a,. ,)=0, are
all equivalent. The proof of this is an elementary exercise about lim inf’s
and lim sup’s. For instance, if (iii) holds and lim sup,_,  a,=1 then there
1s an infinite subsequence of the «,’s which are all positive and then (iii) via
induction implies that the a,’s are all positive for sufficiently large »’s so
that by (iii) we have lim, _ _ a,=1. On the other hand, if (i) holds and
limsup, _ , a,<1, then (1 +a,) can be estimated from above by a con-
stant multiple of {1 +a,)(1 —a,_ ) for sufficiently large »’s so that by (1)
we have lim a,= —1. Proving (i) from (i1) is even simpler.

n > o

n—

Remark 8. If limsup,_ , [@,(u,0)]=1 then u is singular (cf. [37,
Lemma 4, p. 110] and for its operator theoretic analogue see [6]).°

Remark 9. Observe that &,(u, 0) dé"(l —n 'Yexplilogn), neN, is a
divergent sequence for which (vi) in Theorem 6 holds.

ExampLE 10. A. Zhedanov’s example where, given 0 <g < 1, @, (4, O)q—sr

2¢" — 1, neN, yields yet another sequence for which (vi) in Theorem 6
holds.

® We point out a typographical error in [37] appearing both in the Russian original and
in the English translation. Namely, the condition limsup, , , {@,(;, 0} =1 is stated as
limsup, . , @, 0)=1.

640°83°3-9
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The details of A. Zhedanov’s example are as follows. We construct a
measure ¢ on T with —1 as the only limit point in its support and
calculate its recursion coefficients expticitly.'”

Given 0 < g < 1, consider the so-called (monic) “discrete ¢g-Hermite poly-
nomials” (also known as the Al-Salam & Carlitz polynomials)

BARE (¢: q) s
H,(x;q)= — n (= LyF gkt Diyn -2k 0<g<l,
k;(, ((1.‘; (1_)1\' (q’ q)n — 2k
where (a; ¢q), = Z':(‘, {1 —ag*). These polynomials are known to be

orthogonal (but they are not orthonormal) on [ —1, 1] with respect to a
discrete measure ¢ on the real line, concentrated at the two-sided sequence
{ ¢’} 7, with masses y, E o{ +¢’} >0 for j=0, 1, ... The corresponding
three-term recurrence is given by

Hn4-l('\‘; (1):'\—1{11('\‘; (1)—(1” l(l —(]”)H" ](-\’; (1)1
Hyx;q)=1, H(x; q)=x, neN,

(cf. [ 12, Exercise 7.38, p. 1937). Going over to the unit circle and denoting
the corresponding measure by v, we have by Geronimus’ formulas

D,, (v,0)=0 and @,,(v,0)=2¢"—1, neN,
(cf. [16, Theorem 31.1, p. 67]). The measure v, which can be viewed as a
measure on [ —=z, ), is symmetric and it is concentrated at the set
{+0} 7, where cos 0 = +¢/ and v{ £07F} =y, for j=0, 1, ... We have
0 +0; == The condition @,, (v,0)=0, ne N, means that the measure
v is “sieved”. For the measure x4 concentrated at the points {z;} where
P £ 207 and 7 £ 20, —2n with masses {7} ] 7;, we have dv(f)) =
du(20). The support of the measure g has only one limit point at —m, that
is, the derived set of supp(u) with x viewed as a measure on T, consists of
{ —1}, and corresponding recurrence coefficients @,(u,0) are equal to

2¢" — 1 for ne N (cf. [46, formula (7), p. 2] applied with d=1/2).

4. PERTURBATION ANALYSIS

Given ae C with 0 < |u| < 1, consider

W, 2)

det’ (pn( l[’ Z )
K ()1 — lal*)™*

5.1, ) = 5 and ¢ (u )%
Pulpe, 2) 1 —[a]) Valt

(32)

ni2

" We thank A. Zhedanov for his permission to include his example here (cf. [46, pp. 1-2]).
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Then ¢, and , have the same leading coefficients as the comparison poly-
nomials ¢, and l//,, which are associated with the reflection coefficients

fa}, .., and {—al, .. respectively (cf. Section 2).

LemMmA 11, Given a probability measure ¢ on T having an infinite sup-
port, and ae C with 0 < a| <1, let E, (i, a) be defined by

1 0 D1, 0)—
E i, a 7)Y ( e 0) a>‘ neN. (33)
\/l“l(l| n /l 0 )—ua 0

Then, for ne N,
sowa (2 A" (@i, D) J/,.Uu:))
I — |a]?)"* z
(1=l (:a 1) <<7)::‘(;«:) ~ I )
1 | A o oa\ f!
— _ (A+1J’
(l _l>+kgol lal?) (:d l)

@ilpe, 2} Gt 2) )
E, LAy z ~ . 34
*Eialpoa )<<7)Zf(/t.:) T ) t34)

or, equivalently,
<</3,,(ﬂ, 5l :))
PXe.zy — P X z)
NE) W:)) 1 («:,. x 1(2) w,, - >>< 1>
= . + -
<¢:(:) —l//rf(:) 2 g (Pn I\\l( ) n—k ( ) _1

Prlpe, 2) wk(/l, 3)>
Ep(pany| o - 35
X Bialpe ’(wﬂ/z S B (35)

where { @}, .« and {W,,}, . are the orthogonal pelynomials corresponding
to the reflection coefficients {a} , ., and { —a}, _.,, respectively, that is,

Pul) Wﬂ) < a>"<1 1)
~ = l_ 2 ; 3
<</‘>,’:<:} 2R kLl U I C (36)

(¢f- (3) and (15)).

Proof of Lemma 11.  We rewrite the matrix recurrence (8) as

<(Pk~1(l‘ ) 'kk+l(#~:)>: 1 (5 U><(/’A-(/1-:) ‘?k )
PE D) —YE D)) Jl—taP @ TA@Eu2) —y Xz

@il 2) W/\(/l z >
+E, (i, a,:z <~
cerkitod.2) P ) — PR
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(cf. (33)). Multiplying this from the left by (1 — |a|?)*+* "2 (2 ¢) *~ ' and

summing over k=0, 1, .., n— 1, yields (34). Formula (35) follows directly
from (34) and (36). §

THEOREM 12.  Let it be a probability measure on T having an infinite sup-

. . - . el

port. Given aeC with 0 <|a| <1, let ae(0,n) be defined by cos(aj2) =
V1= al. If the reflection coefficients { @ (1, 0)} .., of the corresponding

orthogonal polynomials satisfy

Z |t* (1, 0) —a| < oo, aeC, 0<|ul <1, €T, (37)
k=1

then the measure u is absolutely continuous on the open circular arc' t4°,
and for every closed circular subarc 6 =t A4 we have 1jp' e L7(&). If

Y logk [t%@ (4, 0) — af < oo, aeC, 0<|al <1, teT, (38)
k=1

then s{q‘_ti.s_'fie.s‘ Szegd’s condition on 1A, that is, v, logu € L'(t4,) where
v, 0) = sin((0 —arg 7)/2) |cos a —cos(O —arg 1)| ~ V2 (¢f. (22)). If there is
a constant C >0 such that

Z kt*d (. 0)~—a|

.y
<Clog(n+1), aeC, 0<lal <1, teT, neN, (39)
then there exist two constants D>0 and y >0 such that p'(z) = D |cosa —
cos(0 —arg ©)|” for almost every = =¢" et d,. Morcover, if
Y k@, 0) —al < oo, aeC, 0<lal<1, €T, (40)
k=1

then there exists a constunt D>0 such that y'(z)=2D|cosa—
cos(0 —arg 13| for almost every z=e¢"c14,.

Proof of Theorem 12. First, observe that it is sufficient to prove the
theorem for =1 To see this, note that a composition of the measure

p with the rotation 7°' leads to the orthogonal polynomials
{ou=t ' z)=1"g,(p,T '2)}/_, so that the zeros of the orthogonal

polynomials associated with g -7 ! are t times the zeros of the orthogonal
polynomials corresponding to u. Hence the reflection coefficients, which are
the products of such zeros, satisfy @ (u-7t7', 0)=1"®, (1, 0) for neN.
Therefore, we can assume without loss of generality that r=1.

" Recall that the circular arcs 4, (closed) and 42 (open) have been defined in (13) and
{(14). The rotation of a circular arc 4 by arg 7 for 7€ T is denoted by 7.4,
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Second, observe that, by (3), either of (37)-(40) imply

0< hm K, (101 —Ja)?)"? < oo, (41)

"n—

Hence, sup, ., max._, |@, (1 2)/@. (g, 2)| =" and sup,, . max._q |.(u, 7))
Wo(p, 2)| =) are both finite {cf. (32)).

We will use Lemmas | and 2. In what follows, we fix a norm for 2x2
matrices and define a by the appropriate condition {37)-(40).

Case when (37) Holds. Pick a closed circular subarc & < 42, Then, by
(25) and (35), there are two positive constants C, and C, independent of
1 such that

n—1
max H(%,(#»—) l//,.(lt,~)>”<C1+C Y max [E, (i, a. 2))

~ iy
k=0 “€°

N@X 2y — X u. z)
L g2y Wy )
xmax ||| . nelN,
zed (qot.‘(u,:) -ww,-) H

so that by Gronwall’s inequality (cf. [45, Lemma, p. 440] and the references

therein),
(qm OIS )H
Pripz)  — i)

n—1
<C,exp <Cz ) max “Ek-rl‘.u»a»:)H)’ neN.
k=0 “€°

ma

Thus, since max__, |E, (g4, a, 2} < Cy | @, (g, 0) —al (cf. (33)) with an
appropriate positive constant C, independent of &,

(cg),,w.:) ; —” >“<oc, (42)

su max
4 NV

ne™N ced

and, therefore, by Lemmas 1 and 2, ge AC(&) and 1/’ e L7 (&), respec-
tively (cf. (32) and (41)).

Case when (38) Holds. The basic idea goes back to [29, Theorem 6,
p. 381 ] and [ 7, Theorem 3, p. 355]; it is based on estimates of log ™ 1/u' in
terms of im sup, . , log™ |o,(u)] (cf. (12)).

Let

n—1

S, (u a, )(19 1+ Z NE, , (u, a, z)|

, nezZt, (43)
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(cf. (33)). Then, by (24) and (35),

i 2) fl:/,,l(/t»:)>
(. 2) =gk w2y /|

S, b, @, [V CF min(n, v (0D | E, (1, a, 23 T,

S"(/l’ o, :) = S” /l a, ‘-) + ’ E,,(ﬂ a, z ” H<(p" l(

VAN

-=¢", zed,, neN,

an

with an appropriate constant C* > 0, so that, by induction,

"

0<log S,(yt, a, ) <log Sy{p, a, )+ CF Y min(k, v,(0)) |E, a, 2),

c=¢" zed, neN. (44)
Multiply (44) by v, and integrate the resulting inequality over 4,. Taking
(38) and (33) into consideration, and using sup, . [1/logn+1){, ¢,
min(n, v,}] < o, simple computation yields sup,, . jJ v dog S, (u, a) < oo,
and then, by Lebesgue’s nmionotone convergence theorem, sup, ., v,log
S, (s, a)e L'(4,). Hence, by (24), (35), and (43), sup,,_, v.log* |@.(u)l €
L'(4,). Now use Lemma 2 to conclude that v,log*(1/')eL'(4,). The
integrability of v, log (1/u’) follows from Jensen’s (AGM) inequality.

Case when (39) Holds. We will adapt the arguments used in [ 28]. Our
goal 1s to show that there exists a constant y > 0 such that

D ' /27 sup max |cosa—cos 017 g, (p )| <o,  z=e (45)

nell €.y

and then, by Lemma 2, g'(z)>D|cosa—cos#|” for almost every
z=¢"e 4, what needs to be proved.
By (24) and (25), there are two positive constants C, and C; inde-

pendent of n such that

<<7’,,(/t.:) ~!/7 >H
QX z) —dX /tw)

"

i
<Cy+Cs ) kmztjx NEy + 1t a, )]
0 €«

1
- max
N -edy

ﬂ, neN,
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so that by Gronwall’s inequality (cf. [45, Lemma, p. 440]),

I V2 N V7= B VN V70 (
n e ”(@T(/l <) —!/7,’,* ¢ o) )r

<C,exp (C; Z kde WE. (i, a, )H>~ neN. (46)

k=0 <€

Thus, since [|E; ., (1. a, 2)] < Cy |y, ,(0) —a] (cf. (33)) with an appropriate
positive constant C, independent of k, assumption (39) guarantees the
existence of a constant y* > 0 such that

ll

sup maxn 7 (K(I)"(‘u' 2 J/Jj'

Grs) — D >N<“” “4n

f!

nefN -ed,

In the following argument, we will use the inequality

2 “(@n(/l* :) n ‘U z )H
—cos0]'2 |
feos x=cos 01 | orip ) — B =)

n! I/ @ae z) Uit 2N\
<Ce+Cy @, (0)— <~* - >
‘ (:i:(,’ R VP ”

z=e¢" ced,, neN, (48)

where C,, is an appropriate positive constant. This is an immediate conse-
quence of (24) and (35) (cf. (33)). Also note that by (39)

Y k7@, 0y —af < oo, 0<o<l. (49}

k=1
If 7* <1 in (47) then, by (48) and (49), inequality (45) holds with y=

and we are done. Otherwise, using (47) on the right-hand side of (48) and
applying (49) with ¢ = 1/2 yields

(pn s 7) J}n(ll, o)

sup max# "t [cos x — cos O 12 “( b
b | | GXp. ) —Y R D)

nef -ed,

Jj<ee 0

If ¥* < 3,2 in (50) then again, by (48) and (49), inequality {45) holds with
v=2 and we are done. If y* > 3/2 then we continue this procedure each
step of which lowers y* in the analogues of (47} and (50) by 1/2 and,
simultaneously, raises the value of 3 in (45) by 1. After no more than
[2y*]1—1 steps'” this procedure terminates and then (45) holds with

F<2*]

!> Here [ -] denotes the integer parl.
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Case when (40) Holds. The inequality g'(z)=D |cosa—cos )| for
almost every z=¢" e 4, can be proved along the lines of the case when
{39) holds. Namely, by (46) and (48) (cf. (33} and (40)),

it

I

D2 % 2z sup max |cosa—cos 0]'7 |p(p D) <o,z
ne™N ced,

n

which is the analogue of (45), and then we just repeat the argument used
to obtain a lower estimate for ' from (45), that is, use Lemma 2. |

Remark 13. F. Peherstorfer and R. Steinbauer used a different
approach in [35] to study the asymptotic behavior of orthogonal polyno-
mials with asymptotically periodic recurrence coefficients.

The following theorem is a useful summary of two inequalities proved in
the proof of Theorem 12.

THEOREM 14. Let i be a probability measure on T having an infinite
support. Given ae C with 0 < |a| <1, let € (0, ) be defined by cos(a/2) =
\/1 —lal>. If the reflection coefficients { @ (1, 0)}, . of the corresponding

orthogonal polynomials satisfy

2 lt*® (1, 0) —a| < =, acC, O0<ial<l, 1e€T, (51

k=1

then for every closed circular subarc'® & <t 4¢ we have

sup max |, (g, z)| < oo. (52)
neMN -ed
I
Y kTP, 0) —al < =, aeC, O<lal<l, reT, (53)
k=1
then
max. .., |@, (i z
sup ———— 2. 1t )I<oc. (54)
newN n

Proof of Theorem 14. Just like in the proof of Theorem 12, it is suf-
ficient to prove the theorem for r =1. In addition, again as in the proof of

3 Recall that the circular arcs A, {closed) and 4¢ (open) have been defined in (13) and
(14). The rotation of a circular arc 4 by arg 7 for e T is denoted by 4.
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Theorem 12, in view of (32) and (41), either of the assumptions (51) and
(53) imply

sup max M:_lm
nelN -eT I(ﬂn(ﬂ»— l

so that we need to estimate |@,{x, z)| only. If (51) holds then (52 )
follows from (42), whereas if (53) holds then (54) follows from (46) (cf.
(33)). 1

Remark 15. F. Peherstorfer and R. Steinbauer used a different approach
in [ 36, Proposition 2.1] to prove {52) in Theorem 14.

5. PERTURBATION ANALYSIS {( CONTINUED)

The condition ¥, _, |®(x, 0) — a| < oo can be weakened. To do this one
needs to write the perturbation series in a multiplicative way, much as it
is done in [34] and [31]. Clearly, by (8) and (32),

((27.,(#--") Yalp. = >
P z) —Y s

= Qa,2) + E, (1, a, 7) (q’"* R ”), neN,

P* () —dr (o)

where
Q(a, ) d:el 1 < z a)
1—Jal>\za 1
Writing
ef 2anid s a o @n(lh :) ‘Z,,(,Us -)
B a )% l—a‘”“‘( _ ) <~ )
ot (1=lal) za 1 GXpu 2y —Y Rz

one obtains

Biwa =8, (i a:)+Q2 "az)Efp az:)Q" (a.2) B, \na:x)

=(I+Q "Ma,zVE, (. a,z) Q2" Na,z)) B, _(, a,z),
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and then iterating this yields

2 Lo
B(ua.z)=]] I+Q k(a.:)E,\.(;t,a,:)Qk"(a,:))(l —l>’ ne N,

k=1

where the matrix product is meant to be taken from the right (k= 1) to the
left (k=n). Observe that

and

(]

1 /1 I\JX=) l/},,(:)>
Q "u, )= > .
w3501 1ok
(cf. (36)). We can thus formulate the following result.

THEOREM 16.  Suppose the infinite matrix product

£

1T (7+ Q2 *a,z) Efu, a,2) Q5 '(a, 2)) (35)

k=1

converges (conditionally) in the open circular arc A%. Then

3 _ 2ynf2 z a\ " (ﬁn(ﬂv :) lz:«(ﬂ,:))
”h*rri (=l <3f7 1> (@T(/t,:) —g X, 2)

exists in 4.

The interesting and challenging problem is to describe the condi-
tional convergence of (55) in terms of @,(u,0)—a. For instance, if
3 [@uu.0)—a] converges (conditionally) and Y7, |@(u.0)—al’ < o5,
then what additional conditions (if any) are needed to assure the con-
vergence of (55)7

6. AN EXAMPLE

ExampLE 17. Given ae€[0,7), y>—1, and J> —1, consider the
absolutely continuous measure g in {0, 27) with

,(})@{Ckos 0 —cos a| " |cos(0/2)|° sin(0/2)] if Oe(x, 2r—a),
w0y = 0 if 0e[0,2m)\(o, 27 —2),
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where the normalizing factor C > 0 is chosen in such a way that 4(T)=1.
Then the reflection coefficients for this measure satisfy

6 cos?(a/2)

&, (1, 0)=sin(x/2)+(—1)"
2n

2
mcos(u/?éc?t(a/ ) (—2—3248y?+ 37 cos a)
"’

0 cpsz(a/2)

—(=1 4n-

(140 +2y—sin{a/2))
+O(1/n?), neN. (56)

In particular, for this measure g and for a « sin{«/2), formulas (37) and
{38) hold if and only if 3 =0, whereas formulas (39) and (40) hold if and
only if =0 and y* = 1/4. This is in complete agreement with Theorem 2.
The case d =0 and > =1/4 corresponds to the Lee-Yang weight function
associated with the one dimensional Ising model (¢f [24, formula (45),
p.4161).

Proof of (56). First we make a transition from the unit circle to the real
line (cf. [42, §11.5, p. 2947). The relevant weight function on the real line is
{cos x — x) (1 +x) V"= supported in [ —1, cos «]. If we map the interval
[—1,cosa] to [ —1,1]} by the affine transformation x> (2x + 1 —cos a)/
(1 + cos a}, then the orthogonal polynomials will be the Jacobi polynomials
P r2- 0 and, hence, the orthogonal polynomials on [ —1,cos«] are
PR - D2(2x 4+ 1 —cos a)/( | + cos «)). The monic orthogonal polynomials
are given by

def

2 o S 110N - !
P +cosa)”< n+y+(9 1),2>

n

o PLB 2x+ 1 —cosa I~
! l+cosa /)’ :

The reflection coefficients @,(u, 0) can be obtained from these monic poly-
nomials by

Rn(l)+Rn(‘I'

¢2;1(lt*O)ERH(I)—Rn(_])_l and ¢2n+1(:u‘ O)E—R—”(m
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where R, =%"P, /P, (cf. [16, Theorem 31.1, p.67] or [15, Theorem X,
p- 7587). In our case, we have

(n+D{n+y+6/2+1/2)
2n+y+62+V2)2n +y +5/2 +3/2)

R, (1)=(1+cosa)

P03 cos a)/(1 +cos a))
P (3 —cosa)/(1 + cos )

and

(n+82412)(n+y+35/2+1/2)
(2n+y+9/2+1/202n+y+06/2+3/2)

R (—1)=—(1+cosa)

where we used the fact that P - DD(—1)=(—1)" (" - 172) (cf [42,
formula (4.1.4), p.59]). We have

(n+D(n+y+62+1/2)
(2n+y+0/2+1/2)2n+7+0/2+3/2)

I 6 1—40—06>— 40y — 4y .
_Z+§I—1+ 64n’ +O(n™ ),

(ne N) which leads to

1+cosa
R—1)= ===
0 1 —45—0r—4dy —4y*
x{l4+—+ , L +O(n"3)>, neN.
2n 16n°

For estimating R,(1), we need an asymptofic expression for the ratio of
two consecutive Jacobi polynomials at the point (3 —cos a)/(1 +cosa) > 1.

LemMma 18. Given a> —1, b> —1, and x> 1, the Jacobi polynomials
{plett o normalized by P'“P(1)=("}“) satisfy the ratio asymptotics

n

(n+1)n+at+b+1) Pf)(x)
(2n+a+b+2)2n+a+b+1) PeP(x)

eIy
SRAA <

A(x, a,mb_)
2n?

+O(n*3)>, neN,
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where
b?_ 2
A(x,a, by % — — .
\+1+1/.\‘2—1 x—l+\/.\‘2—1
1 1

+— :
4 /1 (x+ /X =1)
Proof of Lemma 18. By the asymptotic expansion [9, formula (2.13)]

'2n+a+b+1)
22n+1u+h+1)21-(n+1) m+a+b+1)

P(u h)( )

xﬁ('\._*_\/.\,l_ n+(u+h+l Z (‘) I~
(x — 1) Dd (x g )b+ his O(Zn+a+b+l)“ )

where x =cosh 2y ¢ [ —1, 1], a straightforward (but rather tedious) com-
putation readily leads to the desired result taking into account that a,= [
and A(x, a, b)=a,(y). The function ¢, can be computed explicitly, by

(v)= lj‘ 2a 2b 1 i
“RNI=T5 00 | cosh(20) =1 cosh(2e)+ 1 sinh’(20)] ¢

L Yy

(see [9, formulas (2.8) and (2.12)]). Simple calculus gives

dt L 1

J‘. cosh(20+ 1 e +1 —.\’i’ 1 Jr\/.\'2 —1

and

J"_?” L R
osinh’20 e =12 AT T v+ /)

which yields the desired expression for A(x, a, b). |}

Continuing with our computation, simple trigonometry shows'?

2(1 in{a/2
x=(3—cosa)/(l+cos x)::,\-+,/~\-3_1=_(_ﬂg_’_)_), R

1 +cos x

" Curiously, Mathematica failed to prove this even though it was used successfully to per-
form and/or to double check much of the computation in this section.
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so that, by the lemma,

R(1) :

(1 +sin(x/2)) (1 _Alx, . (0-1)/2)

-3
e + Oln )>.

Combining the formulas for R,(—1) and R,(1) gives

J cos(a/2
@, (1, 0)=R(1)—R,(—1)—1=sin(2/2) +—C—Oi—’§w
cos( q/2) cot(x/2)

64n°
— 46 sin{2/2) — 482 sin{a/2) — 85y sin(x/2)} + O(n 7}, ne N,

(—2+20-32+8?—25cosa+d cosa

and

RAH+AR (-1} . 0 cos¥{x/2)
@, . 0= BADERAZN) Gy _0cos /2.

2+ 1(46, Q) R(D—R,(=1) in(o/2) ™
12 L .
COS(O%ZM(—2—2(5—5‘+8y“+20cosa{+0- cos o
64n-

+ 126 sin(a/2) + 407 sin{a/2) + 86y sin(x/2)) + O(n =), neN,

that 1s,

... dcosi(x2)
D,, (i, 0)=sin(x/2) — 2+ 1)
cos(o/2) cot(a/2)

16(20n + 1)?
+ 44 sin(a/2) + 407 sin(x,/2) + 8y sin(a/2)) + O(n ™), neN,

(—=2—~20 -3 +8y>+ 25 cos a4 67 cos «

and, therefore, we have proved (56). |
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